cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232739 Iterates of Hofstadter's A030124: start with a(1) = A030124(1) = 2, thereafter a(n) = A030124(a(n-1)).

This page as a plain text file.
%I A232739 #21 Dec 05 2013 08:34:19
%S A232739 2,4,6,9,13,17,22,28,34,41,49,58,67,77,88,100,112,125,139,154,169,185,
%T A232739 202,220,239,258,278,299,321,344,367,391,416,442,469,497,525,554,584,
%U A232739 615,647,680,713,747,782,818,855,893,931,970,1010,1051,1093,1136,1179
%N A232739 Iterates of Hofstadter's A030124: start with a(1) = A030124(1) = 2, thereafter a(n) = A030124(a(n-1)).
%C A232739 Is the ratio A005228(n)/a(n) converging towards 1 or some larger value? (Cf. the graph drawn by the OEIS Server's plot2-link).
%C A232739 Cf. also M. F. Hasler's comment in A030124.
%H A232739 Antti Karttunen, <a href="/A232739/b232739.txt">Table of n, a(n) for n = 1..2117</a>
%H A232739 OEIS Server, <a href="https://oeis.org/plot2a?name1=A005228&amp;name2=A232739&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=ratio&amp;drawlines=true">Ratio A005228(n)/A232739(n) plotted with Plot 2</a>
%H A232739 <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>
%F A232739 a(1) = 2, and for n> 1, a(n) = A030124(a(n-1)).
%F A232739 For all n >= 1, A232751(a(n)) = A000225(n+1) and a(n) = A232752(A000225(n+1)) [This is just a consequence of how the permutation pair A232751/A232752 has been defined].
%F A232739 For all n >= 1, a(n) = A225850(a(n+1))/2.
%o A232739 (Scheme, with _Antti Karttunen_'s IntSeq-library)
%o A232739 (definec (A232739 n) (if (= n 1) 2 (A030124 (A232739 (- n 1)))))
%Y A232739 Cf. A005228, A030124, A232751, A232752, A000225, A225850.
%Y A232739 Concerning the ratio A005228/A232739 see also A232740, A232750, A232753.
%K A232739 nonn
%O A232739 1,1
%A A232739 _Antti Karttunen_, Dec 04 2013