A232802 Number of solution pairs (x,y) for x <= 11 such that x! + n = y^2 (Brocard-Ramanujan Diophantine equation) is soluble over the integers.
3, 1, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 1, 1, 0
Offset: 1
Keywords
Links
- Bruce Berndt and William Galway, On the Diophantine equation n! + 1 = m^2
- Andrzej Dabrowski, On the Diophantine equation x! + A = y^2, Nieuw Archief voor Wiskunde, Vierde serie Deel 14 No. 3 (Nov. 1996) pp. 321-324.
- Wikipedia, Brocard's problem
- Wikipedia, abc conjecture - some consequences
Crossrefs
Programs
-
Mathematica
Table[Length@Select[Sqrt[Range[11]!+n], IntegerQ[#] &], {n, 1, 200}]
Extensions
Definition narrowed by Georg Fischer, Nov 27 2020
Comments