A232822 Prime(m), where m is such that (Sum_{k=1..m} prime(k)^8) / m is an integer.
2, 191, 12599173, 53029063, 22806625723729, 27568116247823, 41455846079203, 289700908580893, 1194728983756489, 6275148480751847
Offset: 1
Examples
a(2) = 191, because 191 is the 43rd prime and the sum of the first 43 primes^8 = 7287989395992721002 = 43 * 169488125488202814.
Links
Crossrefs
Programs
-
Mathematica
t = {}; sm = 0; Do[sm = sm + Prime[n]^8; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
-
PARI
is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^8); s==0 \\ Charles R Greathouse IV, Nov 30 2013
-
PARI
S=n=0;forprime(p=1,,(S+=p^8)%n++||print1(p",")) \\ M. F. Hasler, Dec 01 2013
Formula
a(n) = prime(A125828(n)). - M. F. Hasler, Dec 01 2013
Extensions
a(5)-a(6) from Paul W. Dyson, Jan 01 2021
a(7) from Bruce Garner, Mar 02 2021
a(8) from Bruce Garner, Mar 30 2021
a(9) from Bruce Garner, Jul 07 2021
a(10) from Paul W. Dyson, Jul 07 2023
Comments