cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232822 Prime(m), where m is such that (Sum_{k=1..m} prime(k)^8) / m is an integer.

Original entry on oeis.org

2, 191, 12599173, 53029063, 22806625723729, 27568116247823, 41455846079203, 289700908580893, 1194728983756489, 6275148480751847
Offset: 1

Views

Author

Robert Price, Nov 30 2013

Keywords

Comments

The primes correspond to indices m = 1, 43, 824747, 3171671, ... = A125828. - M. F. Hasler, Dec 01 2013
a(10) > 1352363608564489. - Bruce Garner, Jul 07 2021
a(11) > 18205684894350047. - Paul W. Dyson, Dec 03 2024

Examples

			a(2) = 191, because 191 is the 43rd prime and the sum of the first 43 primes^8 = 7287989395992721002 = 43 * 169488125488202814.
		

Crossrefs

Cf. A125828.
Cf. A085450 (smallest m > 1 that divides Sum_{k=1..m} prime(k)^n).

Programs

  • Mathematica
    t = {}; sm = 0; Do[sm = sm + Prime[n]^8; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
  • PARI
    is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^8); s==0 \\ Charles R Greathouse IV, Nov 30 2013
    
  • PARI
    S=n=0;forprime(p=1,,(S+=p^8)%n++||print1(p",")) \\ M. F. Hasler, Dec 01 2013

Formula

a(n) = prime(A125828(n)). - M. F. Hasler, Dec 01 2013

Extensions

a(5)-a(6) from Paul W. Dyson, Jan 01 2021
a(7) from Bruce Garner, Mar 02 2021
a(8) from Bruce Garner, Mar 30 2021
a(9) from Bruce Garner, Jul 07 2021
a(10) from Paul W. Dyson, Jul 07 2023