A232862 Least positive integer m <= n^2/2 + 3 such that the set {prime(k) - k: k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
1, 3, 4, 11, 9, 8, 10, 15, 29, 13, 23, 22, 23, 37, 32, 28, 48, 44, 53, 41, 45, 67, 76, 117, 119, 91, 121, 88, 89, 101, 72, 88, 100, 143, 144, 185, 145, 104, 176, 141, 144, 175, 187, 213, 121, 255, 128, 129, 189, 243, 122, 267, 275, 242, 209, 205, 130, 153, 263, 335
Offset: 1
Keywords
Examples
a(3) = 4 since prime(1) - 1 = prime(2) - 2 = 1, prime(3) - 3 = 2, prime(4) - 4 = 3, and {1,2,3} is a complete system of residues modulo 3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Zhi-Wei Sun)
- Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
Programs
-
Mathematica
L[m_,n_]:=Length[Union[Table[Mod[Prime[k]-k,n],{k,1,m}]]] Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2/2+3}]; Print[n," ",0];Label[aa];Continue,{n,1,60}]
Comments