A232866 Positions of the nonnegative integers in the sequence (or tree) of complex numbers generated by these rules: 0 is in S, and if x is in S, then x + 1 and i*x are in S, where duplicates are deleted as they occur.
1, 2, 3, 5, 9, 16, 27, 42, 61, 84, 111, 142, 177, 216, 259, 306, 357, 412, 471, 534, 601, 672, 747, 826, 909, 996, 1087, 1182, 1281, 1384, 1491, 1602, 1717, 1836, 1959, 2086, 2217, 2352, 2491, 2634, 2781, 2932, 3087, 3246, 3409, 3576, 3747, 3922, 4101, 4284
Offset: 1
Examples
Each x begets x + 1, and i*x, but if either these has already occurred it is deleted. Thus, 0 begets (1); then 1 begets (2,i,); then 2 begets 3 and 2*i, and i begets 1 + i and -1, so that g(4) = (3, 2*i, 1 + i, -1), etc.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
Formula
a(n+4) = 2*n^2 + n + 6 for n >= 1 (conjectured).
G.f.: (-1 + x - x^3 - x^4 - x^5 - x^6)/(x -1)^3 (conjectured).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 8 (conjectured).
Comments