This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232878 #26 Jul 29 2024 03:05:09 %S A232878 17,19,71,73,881,883,1151,1153,2591,2593,3527,3529,4049,4051,15137, %T A232878 15139,20807,20809,34847,34849,46817,46819,69191,69193,83231,83233, %U A232878 103967,103969,112337,112339,149057,149059,176417,176419,179999,180001,206081,206083 %N A232878 Twin prime pairs which sum to perfect squares. %C A232878 All square roots of twin prime sums in this sequence (see A152786) are multiples of 6. %C A232878 Digital roots of all pairs in this sequence are {8,1}. %C A232878 Twin primes of the form 18n^2 +- 1. - _Charles R Greathouse IV_, Aug 26 2014 %H A232878 T. D. Noe, <a href="/A232878/b232878.txt">Table of n, a(n) for n = 1..10000</a> %F A232878 a(2*n) = a(2*n-1) + 2, a(2*n+1) = A069496(n). %e A232878 17+19 = 36, square root of 36 = 6; 71+73 = 144, square root of 144 = 12. %t A232878 t = {}; Do[ps = {2 n^2 - 1, 2 n^2 + 1}; If[PrimeQ[ps[[1]]] && PrimeQ[ps[[2]]], AppendTo[t, ps]], {n, 1000}]; Flatten[t] (* _T. D. Noe_, Dec 03 2013 *) %o A232878 (PARI) for(n=1,1e3, if(isprime(t=18*n^2-1) && isprime(t+2), print1(t", "t+2", "))) \\ _Charles R Greathouse IV_, Aug 26 2014 %Y A232878 Cf. A001097, A054735, A069496, A077800. %K A232878 nonn %O A232878 1,1 %A A232878 _Gary Croft_, Dec 01 2013