cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232891 Least positive integer m <= n^2/2 + 3 such that {k*prime(k): k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.

Original entry on oeis.org

1, 3, 4, 11, 7, 7, 10, 17, 43, 13, 51, 22, 51, 36, 31, 49, 64, 71, 119, 73, 86, 68, 141, 110, 153, 85, 83, 86, 144, 81, 174, 127, 115, 87, 122, 138, 143, 134, 133, 142, 211, 229, 152, 104, 109, 177, 259, 142, 194, 176, 196, 311, 312, 193, 243, 197, 396, 169, 156, 171
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 02 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0.
(ii) For any positive integer n not equal to 3, the number n*prime(n) + 1 cannot be a power x^m with m > 1.
(iii) There are infinitely many positive integers n with n - 1, n + 1, n + prime(n), n + prime(n)^2, n^2 + prime(n), n^2 + prime(n)^2 all prime.

Examples

			a(3) = 4 since 1*prime(1) = 2, 2*prime(2) === 3*prime(3) == 0 (mod 3), and 4*prime(4) = 28 == 1 (mod 3).
		

Crossrefs

Programs

  • Mathematica
    L[m_,n_]:=Length[Union[Table[Mod[k*Prime[k],n],{k,1,m}]]]
    Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2/2+3}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,60}]