A232891 Least positive integer m <= n^2/2 + 3 such that {k*prime(k): k = 1,...,m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
1, 3, 4, 11, 7, 7, 10, 17, 43, 13, 51, 22, 51, 36, 31, 49, 64, 71, 119, 73, 86, 68, 141, 110, 153, 85, 83, 86, 144, 81, 174, 127, 115, 87, 122, 138, 143, 134, 133, 142, 211, 229, 152, 104, 109, 177, 259, 142, 194, 176, 196, 311, 312, 193, 243, 197, 396, 169, 156, 171
Offset: 1
Keywords
Examples
a(3) = 4 since 1*prime(1) = 2, 2*prime(2) === 3*prime(3) == 0 (mod 3), and 4*prime(4) = 28 == 1 (mod 3).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Zhi-Wei Sun)
Programs
-
Mathematica
L[m_,n_]:=Length[Union[Table[Mod[k*Prime[k],n],{k,1,m}]]] Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2/2+3}]; Print[n," ",counterexample];Label[aa];Continue,{n,1,60}]
Comments