cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232895 Sequence (or tree) S of all positive integers in the order generated by these rules: 1 and 2 are in S; if x is in S then x + 2 and 2*x are in S, where duplicates are deleted as they occur.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 12, 16, 9, 14, 20, 24, 18, 32, 11, 28, 22, 40, 26, 48, 36, 34, 64, 13, 30, 56, 44, 42, 80, 52, 50, 96, 38, 72, 68, 66, 128, 15, 60, 58, 112, 46, 88, 84, 82, 160, 54, 104, 100, 98, 192, 76, 74, 144, 70, 136, 132, 130, 256, 17, 62
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2013

Keywords

Comments

Let S be the sequence (or tree) of numbers generated by these rules: 1 and 2 are in S; if x is in S then x + 2 and 2*x are in S, where duplicates are deleted as they occur. Every positive integer occurs exactly once in S, so that S is a permutation of the natural numbers. Deleting duplicates as they occur, the generations of S are given by g(1) = (1,2), g(2) = (3,4), g(3) = (5,6,8), g(4) = (7,10,12,16), ... Concatenating gives 1,2,3,4,5,6,8,... Conjecture: the position of the n-th odd positive integer in S is the linearly recurrent sequence given by A232896(n) for n>=1.

Examples

			To generate S, start with g(1) = (1,2).  Then 1 begets 3 and 2, but 2 is deleted as a duplicate, and 2 begets 4 and 4, of which the second 4 is deleted; thus g(2) = (3,4).
		

Crossrefs

Programs

  • Mathematica
    x = {1, 2}; dx = 0; Do[x = DeleteDuplicates[Flatten[AppendTo[x, Transpose[{# + 2, 2*#}] &[Drop[x, Length[x] - dx]]]]]; dx = Length[x] - dx, {31}]; x  (* A232895 *)
    t = Flatten[Position[Denominator[x/2], 2]] (* A232896 conjectured *)
    (* Peter J. C. Moses, Dec 02 2013 *)