A232895 Sequence (or tree) S of all positive integers in the order generated by these rules: 1 and 2 are in S; if x is in S then x + 2 and 2*x are in S, where duplicates are deleted as they occur.
1, 2, 3, 4, 5, 6, 8, 7, 10, 12, 16, 9, 14, 20, 24, 18, 32, 11, 28, 22, 40, 26, 48, 36, 34, 64, 13, 30, 56, 44, 42, 80, 52, 50, 96, 38, 72, 68, 66, 128, 15, 60, 58, 112, 46, 88, 84, 82, 160, 54, 104, 100, 98, 192, 76, 74, 144, 70, 136, 132, 130, 256, 17, 62
Offset: 1
Examples
To generate S, start with g(1) = (1,2). Then 1 begets 3 and 2, but 2 is deleted as a duplicate, and 2 begets 4 and 4, of which the second 4 is deleted; thus g(2) = (3,4).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
x = {1, 2}; dx = 0; Do[x = DeleteDuplicates[Flatten[AppendTo[x, Transpose[{# + 2, 2*#}] &[Drop[x, Length[x] - dx]]]]]; dx = Length[x] - dx, {31}]; x (* A232895 *) t = Flatten[Position[Denominator[x/2], 2]] (* A232896 conjectured *) (* Peter J. C. Moses, Dec 02 2013 *)
Comments