cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232928 a(n) is the smallest q such that the primes<=q generate the multiplicative group modulo n.

This page as a plain text file.
%I A232928 #9 Jun 03 2017 15:31:00
%S A232928 2,3,2,5,3,5,2,3,2,7,2,3,7,5,3,5,2,11,5,7,5,13,2,5,2,5,2,11,3,5,5,3,3,
%T A232928 7,2,3,7,11,3,11,3,7,7,5,5,13,3,3,5,5,2,5,3,11,5,3,2,13,2,3,5,5,3,7,2,
%U A232928 5,5,19,7,13,5,5,7,7,3,7,3,11,2,5,2,13,3,3,5,7,3,11,3,5,11,5,7,13,5,3,5,11,2,7,3,11,13,3,2,7,3,7,11,11,3,13,7,7,7,11,11,17
%N A232928 a(n) is the smallest q such that the primes<=q generate the multiplicative group modulo n.
%H A232928 E. Bach and L. Huelsbergen, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1195432-5 ">Statistical evidence for small generating sets</a>, Math. Comp. 61 (1993) 69-82.
%H A232928 S. R. Finch, <a href="/A232927/a232927.pdf">Average least nonresidues</a>, December 4, 2013. [Cached copy, with permission of the author]
%H A232928 P. Pollack, <a href="http://dx.doi.org/10.1016/j.jnt.2011.12.015">The average least quadratic nonresidue modulo m and other variations on a theme of Erdos</a>, J. Number Theory 132 (2012) 1185-1202.
%K A232928 nonn
%O A232928 3,1
%A A232928 _Steven Finch_, Dec 02 2013