This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232933 #27 Dec 19 2020 02:29:12 %S A232933 1,1,0,2,3,3,12,4,8,35,45,40,144,348,132,96,910,1862,1316,952,5976, %T A232933 11600,14808,5760,2176,39942,100260,123606,63360,35712,306570,919270, %U A232933 1069910,910650,343040,79360,2698223,8427243,11694397,10673641,4477440,1945856 %N A232933 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping, cyclic wrap-around) occurrences of the consecutive step pattern UDU (U=up, D=down); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows. %H A232933 Alois P. Heinz, <a href="/A232933/b232933.txt">Rows n = 0..200, flattened</a> %e A232933 T(2,1) = 2: 12, 21 (the two U's of UDU overlap). %e A232933 T(3,0) = 3: 132, 213, 321. %e A232933 T(3,1) = 3: 123, 231, 312. %e A232933 T(4,0) = 12: 1243, 1342, 1432, 2134, 2143, 2431, 3124, 3214, 3421, 4213, 4312, 4321. %e A232933 T(4,1) = 4: 1234, 2341, 3412, 4123. %e A232933 T(4,2) = 8: 1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231. %e A232933 Triangle T(n,k) begins: %e A232933 : 0 : 1; %e A232933 : 1 : 1; %e A232933 : 2 : 0, 2; %e A232933 : 3 : 3, 3; %e A232933 : 4 : 12, 4, 8; %e A232933 : 5 : 35, 45, 40; %e A232933 : 6 : 144, 348, 132, 96; %e A232933 : 7 : 910, 1862, 1316, 952; %e A232933 : 8 : 5976, 11600, 14808, 5760, 2176; %e A232933 : 9 : 39942, 100260, 123606, 63360, 35712; %e A232933 : 10 : 306570, 919270, 1069910, 910650, 343040, 79360; %p A232933 b:= proc(u, o, t) option remember; `if`(u+o=0, %p A232933 `if`(t=2, x, 1), expand( %p A232933 add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o)+ %p A232933 add(b(u-j, o+j-1, `if`(t=2, 3, 1)), j=1..u))) %p A232933 end: %p A232933 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p))) %p A232933 (`if`(n<2, 1, n* b(0, n-1, 1))): %p A232933 seq(T(n), n=0..12); %t A232933 b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, If[t == 2, x, 1], Expand[Sum[ b[u + j - 1, o - j, 2]*If[t == 3, x, 1], {j, 1, o}] + Sum[b[u - j, o + j - 1, If[t == 2, 3, 1]], {j, 1, u}]]]; %t A232933 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]] [If[n < 2, 1, n*b[0, n - 1, 1]]]; %t A232933 T /@ Range[0, 12] // Flatten (* _Jean-François Alcover_, Dec 19 2020, after _Alois P. Heinz_ *) %Y A232933 Column k=0 gives A232899. %Y A232933 Row sums give A000142. %Y A232933 T(2n,n) gives A009752(n) = 2n * A000182(n) for n>0. %Y A232933 T(2n+1,n) gives (2n+1) * A024283(n) for n>0. %Y A232933 Cf. A295987. %K A232933 nonn,tabf %O A232933 0,4 %A A232933 _Alois P. Heinz_, Dec 02 2013