cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232950 Number of n X 3 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, diagonally or antidiagonally, and top left element zero.

Original entry on oeis.org

9, 129, 1881, 27441, 400329, 5840289, 85202361, 1242993681, 18133691049, 264547403649, 3859408908441, 56303849204721, 821401284620169, 11983196174074209, 174819534903392121, 2550393846506436561
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2013

Keywords

Examples

			Some solutions for n=4:
..0..1..3....0..1..0....0..0..0....0..1..3....0..2..0....0..0..0....0..0..0
..0..2..3....3..2..0....0..1..0....1..1..3....0..1..3....2..2..2....2..0..0
..2..2..2....0..2..2....0..0..0....0..1..1....1..1..0....2..3..2....2..0..2
..0..2..3....3..2..3....2..0..0....0..1..1....3..1..3....3..3..2....0..0..2
		

Crossrefs

Column 3 of A232955.

Formula

Empirical: a(n) = 15*a(n-1) - 6*a(n-2).
Conjectures from Colin Barker, Oct 06 2018: (Start)
G.f.: 3*x*(3 - 2*x) / (1 - 15*x + 6*x^2).
a(n) = (2^(-1-n)*((15-sqrt(201))^n*(-3+sqrt(201)) + (3+sqrt(201))*(15+sqrt(201))^n)) / sqrt(201).
(End)