A232955 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, diagonally or antidiagonally, and top left element zero.
1, 3, 4, 9, 21, 16, 27, 129, 147, 64, 81, 771, 1881, 1029, 256, 243, 4629, 22971, 27441, 7203, 1024, 729, 27771, 283131, 685251, 400329, 50421, 4096, 2187, 166629, 3484893, 17429409, 20442651, 5840289, 352947, 16384, 6561, 999771, 42904365, 442227825
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..2..3..2....0..1..3..3....0..1..0..2....0..1..0..0....0..2..0..2 ..2..2..3..3....0..1..1..1....3..2..0..1....0..2..0..0....2..0..2..2 ..0..2..3..3....0..1..0..0....2..2..3..2....0..2..0..2....1..0..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 7*a(n-1)
k=3: a(n) = 15*a(n-1) -6*a(n-2)
k=4: a(n) = 31*a(n-1) -35*a(n-2) +5*a(n-3)
k=5: [order 10]
k=6: [order 21]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 5*a(n-1) +6*a(n-2)
n=3: a(n) = 12*a(n-1) +7*a(n-2) -40*a(n-3) +12*a(n-4)
n=4: [order 10]
n=5: [order 26] for n>27
n=6: [order 86] for n>87
Comments