cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232955 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, diagonally or antidiagonally, and top left element zero.

Original entry on oeis.org

1, 3, 4, 9, 21, 16, 27, 129, 147, 64, 81, 771, 1881, 1029, 256, 243, 4629, 22971, 27441, 7203, 1024, 729, 27771, 283131, 685251, 400329, 50421, 4096, 2187, 166629, 3484893, 17429409, 20442651, 5840289, 352947, 16384, 6561, 999771, 42904365, 442227825
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2013

Keywords

Comments

Table starts
......1.........3............9..............27.................81
......4........21..........129.............771...............4629
.....16.......147.........1881...........22971.............283131
.....64......1029........27441..........685251...........17429409
....256......7203.......400329........20442651.........1074244299
...1024.....50421......5840289.......609853251........66226131273
...4096....352947.....85202361.....18193384251......4082986991091
..16384...2470629...1242993681....542752261251....251727862281441
..65536..17294403..18133691049..16191600916251..15519780149309307
.262144.121060821.264547403649.483034266181251.956841601733733945

Examples

			Some solutions for n=3 k=4
..0..2..3..2....0..1..3..3....0..1..0..2....0..1..0..0....0..2..0..2
..2..2..3..3....0..1..1..1....3..2..0..1....0..2..0..0....2..0..2..2
..0..2..3..3....0..1..0..0....2..2..3..2....0..2..0..2....1..0..2..0
		

Crossrefs

Column 1 is A000302(n-1)
Column 2 is A169634(n-1)
Row 1 is A000244(n-1)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 7*a(n-1)
k=3: a(n) = 15*a(n-1) -6*a(n-2)
k=4: a(n) = 31*a(n-1) -35*a(n-2) +5*a(n-3)
k=5: [order 10]
k=6: [order 21]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 5*a(n-1) +6*a(n-2)
n=3: a(n) = 12*a(n-1) +7*a(n-2) -40*a(n-3) +12*a(n-4)
n=4: [order 10]
n=5: [order 26] for n>27
n=6: [order 86] for n>87