This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232962 #36 Dec 16 2024 21:58:12 %S A232962 2,3974779,15681179,250818839,6682314181,9143935289,311484445891, %T A232962 718930864213,1004267651657,7014674460791,1745134691306711, %U A232962 2853623691677477,9950715071009107 %N A232962 Prime(m), where m is such that (Sum_{k=1..m} prime(k)^9) / m is an integer. %C A232962 The primes correspond to indices n = 1, 281525, 1011881, 13721649, 309777093, 417800903, 12252701193, 27377813605, 37762351523 = A131263. %C A232962 a(12) > 1878338967416897. - _Paul W. Dyson_, Mar 27 2021 %C A232962 a(13) > 3475385758524527. - _Bruce Garner_, Jan 10 2022 %C A232962 a(14) > 10765720281292199. - _Paul W. Dyson_, Aug 11 2022 %C A232962 a(14) > 18205684894350047. - _Paul W. Dyson_, Dec 16 2024 %H A232962 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a> %F A232962 a(n) = prime(A131263(n)). - _M. F. Hasler_, Dec 01 2013 %e A232962 a(2) = 3974779, because 3974779 is the 281525th prime and the sum of the first 281525 primes^9 = 6520072223138145034616659509499972547782386874741800687550730350 when divided by 281525 equals 23159833844731888942781847116597007540297973092058611801974 which is an integer. %t A232962 t = {}; sm = 0; Do[sm = sm + Prime[n]^9; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) %o A232962 (PARI) is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^9); s==0 \\ _Charles R Greathouse IV_, Nov 30 2013 %o A232962 (PARI) S=n=0;forprime(p=1,,(S+=p^9)%n++||print1(p",")) \\ _M. F. Hasler_, Dec 01 2013 %Y A232962 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). %Y A232962 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. %Y A232962 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. %K A232962 nonn,more %O A232962 1,1 %A A232962 _Robert Price_, Dec 02 2013 %E A232962 a(10) from _Karl-Heinz Hofmann_, Jan 24 2021 %E A232962 a(11) from _Paul W. Dyson_, Mar 27 2021 %E A232962 a(12) from _Bruce Garner_, Jan 10 2022 %E A232962 a(13) from _Paul W. Dyson_, Aug 11 2022