This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232964 #29 Jun 05 2021 11:34:17 %S A232964 1,2,4,6,10,12,14,82,93,476,712,856,935,11104,11706,12234,19500,21490, %T A232964 31864,171252,628863,10189718,12363588,13976077,22321041,36642393, %U A232964 47563206,102352700,869166585,1197804361,1400403575,2199080290,5225532140,39957170689 %N A232964 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^9. %C A232964 a(49) > 3*10^13. - _Bruce Garner_, Jun 05 2021 %H A232964 Bruce Garner, <a href="/A232964/b232964.txt">Table of n, a(n) for n = 1..48</a> (first 34 terms from Robert Price) %H A232964 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a> %e A232964 a(5)=10 because 1 plus the sum of the first 10 primes^9 is 16762578985600 which is divisible by 10. %t A232964 p = 2; k = 0; s = 1; lst = {}; While[k < 40000000000, s = s + p^9; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *) %Y A232964 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). %Y A232964 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. %Y A232964 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. %K A232964 nonn %O A232964 1,2 %A A232964 _Robert Price_, Dec 02 2013