This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232969 #20 Sep 21 2021 11:51:03 %S A232969 1,6,60,675,7992,97416,1209951,15227190,193507056,2477564820, %T A232969 31910429520,412987306320,5366341375695,69965422235442, %U A232969 914825583252396,11991475839917115,157524763370404320,2073261181622482080,27333449595845251524,360903785815145617992 %N A232969 The sequence S(n,n) that enumerates a certain class of lattice paths from (0,0) to (n,n). %C A232969 See Dziemianczuk for precise definition. %H A232969 Alois P. Heinz, <a href="/A232969/b232969.txt">Table of n, a(n) for n = 0..884</a> (first 101 terms from Lars Blomberg) %H A232969 M. Dziemianczuk, <a href="http://paperity.org/p/34654227/counting-lattice-paths-with-four-types-of-steps">Counting Lattice Paths With Four Types of Steps</a>, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1. %p A232969 b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1, %p A232969 `if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+ %p A232969 `if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0)) %p A232969 end: %p A232969 a:= n-> b(n$2): %p A232969 seq(a(n), n=0..22); # _Alois P. Heinz_, Sep 21 2021 %t A232969 Table[Function[k, Sum[Sum[Binomial[k, j] Binomial[j, i - j] Binomial[2 k + n - i, k], {j, 0, i}], {i, 0, n + k}]]@ n, {n, 0, 19}] (* _Michael De Vlieger_, Jul 22 2017 *) %o A232969 (PARI) \\ Dziemianczuk, Proposition 1 %o A232969 S(n,k)=sum(i=0,n+k,sum(j=0,i,binomial(k,j)*binomial(j,i-j)*binomial(2*k+n-i,k))); %o A232969 vector(20,x,x--;S(x,x)) \\ _Lars Blomberg_, Jul 20 2017 %Y A232969 Leading column of array in A232973. %K A232969 nonn %O A232969 0,2 %A A232969 _N. J. A. Sloane_, Dec 05 2013 %E A232969 a(8)-a(19) from _Lars Blomberg_, Jul 20 2017