This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A232981 #21 Feb 24 2022 02:06:22 %S A232981 1,1,2,6,24,24,144,1008,8064,72576,72576,798336,9580032,124540416, %T A232981 1743565824,1743565824,27897053184,474249904128,8536498274304, %U A232981 162193467211776,162193467211776,3406062811447296,74933381851840512,1723467782592331776,41363226782215962624,41363226782215962624 %N A232981 The Gauss factorial n_5!. %C A232981 The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j. %H A232981 Robert Israel, <a href="/A232981/b232981.txt">Table of n, a(n) for n = 0..542</a> %H A232981 J. B. Cosgrave and K. Dilcher, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.118.09.812">An introduction to Gauss factorials</a>, Amer. Math. Monthly, 118 (2011), 810-828. %H A232981 J. B. Cosgrave and K. Dilcher, <a href="http://dx.doi.org/10.1007/s10474-013-0357-1">The Gauss-Wilson theorem for quarter-intervals</a>, Acta Mathematica Hungarica, Sept. 2013. %F A232981 From _Robert Israel_, Mar 06 2017: (Start) %F A232981 a(n) = a(n-1) if 5 | n; otherwise n*a(n-1). %F A232981 a(n) = n!/(5^floor(n/5)*floor(n/5)!). (End) %p A232981 Gf:=proc(N,n) local j,k; k:=1; %p A232981 for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end; %p A232981 f:=n->[seq(Gf(N,n),N=0..40)]; %p A232981 f(5); %t A232981 Table[n!/(5^#*#!) &@ Floor[n/5], {n, 0, 25}] (* _Michael De Vlieger_, Mar 06 2017 *) %o A232981 (Magma) k:=5; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // _Bruno Berselli_, Dec 10 2013 %Y A232981 The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively. %K A232981 nonn %O A232981 0,3 %A A232981 _N. J. A. Sloane_, Dec 08 2013