A233003 (n!)^2 mod Pt(n), where Pt(n) is product of first n positive triangular numbers (A000217).
0, 1, 0, 36, 900, 8100, 0, 25401600, 514382400, 12859560000, 6224027040000, 56016243360000, 9466745127840000, 1855482045056640000, 0, 6679735362203904000000, 13513104637738497792000000, 156365925093831188736000000, 225792395835492236534784000000, 22579239583549223653478400000000
Offset: 1
Keywords
Examples
a(4) = 1*4*9*16 mod 1*3*6*10 = 576 mod 90 = 36.
Crossrefs
Programs
-
Python
s=t=1 for n in range(1,33): s*=n*n t*=n*(n+1)//2 print(s%t, end=', ')
Comments