This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233010 #27 Dec 16 2013 12:27:33 %S A233010 0,1,3,4,7,9,10,12,13,16,21,27,28,30,36,39,40,43,48,52,61,63,73,81,82, %T A233010 84,90,91,103,108,112,117,120,121,124,129,144,156,160,183,189,196,208, %U A233010 219,243,244,246,252,270,273,280,292,309,324,328,336,351,360,363 %N A233010 In balanced ternary notation, either a palindrome or becomes a palindrome if trailing 0's are omitted. %C A233010 Symmetric strings of -1, 0, and 1, including as many leading as trailing zeros. %H A233010 Lei Zhou, <a href="/A233010/b233010.txt">Table of n, a(n) for n = 1..10000</a> %e A233010 10 is included since in balanced ternary notation 10 = (101)_bt is a palindrome; %e A233010 144 is included since 144 = (1TT100)_bt, where we use T to represent -1. When trailing zeros removed, 1TT1 is a palindrome. %t A233010 BTDigits[m_Integer, g_] := %t A233010 Module[{n = m, d, sign, t = g}, %t A233010 If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n]; %t A233010 d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++]; %t A233010 While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign; %t A233010 t = BTDigits[sign*(n - 3^(d - 1)), t]]; t]; %t A233010 BTpaleQ[n_Integer] := Module[{t, trim = n/3^IntegerExponent[n, 3]}, %t A233010 t = BTDigits[trim, {0}]; t == Reverse[t]]; %t A233010 Select[Range[0, 363], BTpaleQ[#] &] %Y A233010 Cf. A002113, A061917, A006995, A057890, A134027 %K A233010 nonn,base %O A233010 1,3 %A A233010 _Lei Zhou_, Dec 13 2013