cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233020 Number of n X 2 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, vertically, diagonally or antidiagonally, and top left element zero.

Original entry on oeis.org

3, 15, 81, 435, 2337, 12555, 67449, 362355, 1946673, 10458075, 56183721, 301834755, 1621541217, 8711375595, 46799960409, 251422553235, 1350712686993, 7256408541435, 38983468081161, 209430157488675, 1125117723605697
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2013

Keywords

Examples

			Some solutions for n=5:
..0..2....0..0....0..0....0..1....0..0....0..0....0..1....0..2....0..0....0..0
..2..2....1..1....2..2....1..1....1..1....0..2....0..1....2..0....1..1....0..0
..3..2....1..1....2..3....0..0....0..0....2..2....0..1....2..0....1..1....1..1
..3..2....1..3....3..3....2..2....1..1....2..3....0..1....0..2....3..3....3..1
..2..3....3..3....3..2....0..0....3..1....2..3....0..1....0..2....2..3....3..1
		

Crossrefs

Column 2 of A233026.

Formula

Empirical: a(n) = 5*a(n-1) + 2*a(n-2).
Conjectures from Colin Barker, Oct 06 2018: (Start)
G.f.: 3*x / (1 - 5*x - 2*x^2).
a(n) = sqrt(3/11)*(((5+sqrt(33))/2)^n - ((5-sqrt(33))/2)^n) = 3*A015535(n).
(End)