A233033 Decimal expansion of sum_(n=1..infinity) (-1)^(n-1)*H(n)/n^3 where H(n) is the n-th harmonic number.
8, 5, 9, 2, 4, 7, 1, 5, 7, 9, 2, 8, 5, 9, 0, 6, 1, 5, 5, 3, 9, 9, 0, 9, 9, 3, 9, 4, 7, 5, 7, 5, 9, 9, 8, 0, 7, 1, 2, 8, 8, 4, 3, 5, 0, 8, 6, 0, 4, 1, 4, 9, 2, 6, 7, 6, 0, 5, 2, 0, 6, 8, 9, 7, 6, 6, 3, 8, 3, 4, 8, 1, 5, 3, 3, 4, 8, 9, 2, 3, 3, 0, 7, 1, 1, 3, 8, 8, 3, 8, 1, 5, 1, 8, 8, 4, 3, 0, 6, 0
Offset: 0
Examples
0.859247157928590615539909939475759980712884350860414926760520689766...
Links
- Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 32.
Crossrefs
Programs
-
Mathematica
RealDigits[ 11*Pi^4/360 + 1/12*Pi^2*Log[2]^2 - Log[2]^4/12 - 2*PolyLog[4, 1/2] - 7/4*Log[2]*Zeta[3], 10, 100] // First
-
PARI
11*Pi^4/360 + Pi^2*log(2)^2/12 - log(2)^4/12 - 2*polylog(4, 1/2) - 7*log(2)*zeta(3)/4 \\ Charles R Greathouse IV, Aug 27 2014
Formula
Equals 11*Pi^4/360 +1/12*Pi^2*log(2)^2 -log(2)^4/12 -2*Li4(1/2) -7/4*log(2)*zeta(3).
Also, equals 1/2*integral_{z=0..1} (log(z)^2*log(1+z)) / (z*(1+z)) dz.