This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233038 #23 Feb 16 2025 08:33:20 %S A233038 88799,284729,626609,6560999,17843459,42981929,69156539,124066079, %T A233038 208729049,615095849,832143449,1730416139,2488117769,3693221669, %U A233038 12171651629,31152738299,34230869579,63550891499,69428293379,89858819579,164310445289,197856064319 %N A233038 Primes p in prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20) at the end of the maximal gaps in A201251. %C A233038 Prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20) are one of the two types of densest permissible constellations of 7 primes. Maximal gaps between septuplets of this type are listed in A201251; see comments and formulas there. %H A233038 Alexei Kourbatov, <a href="/A233038/b233038.txt">Table of n, a(n) for n = 1..52</a> %H A233038 Tony Forbes, <a href="http://anthony.d.forbes.googlepages.com/ktuplets.htm">Prime k-tuplets</a> %H A233038 Alexei Kourbatov, <a href="http://www.javascripter.net/math/primes/maximalgapsbetweenprimeseptuplets.htm">Maximal gaps between prime septuplets</a> %H A233038 Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053, 2013. %H A233038 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/k-TupleConjecture.html">k-Tuple Conjecture</a> %e A233038 The gap of 83160 between septuplets starting at p=5639 and p=88799 is the very first gap, so a(1)=88799. The gap of 195930 between septuplets starting at p=88799 and p=284729 is a maximal (record) gap - larger than any preceding gap; therefore a(2)=284729. The next gap of 341880 ending at 626609 is again a record, so a(3)=626609. The next gap is smaller, so that gap does not contribute a new term to the sequence. %Y A233038 Cf. A022010, A201251, A201252 %K A233038 nonn %O A233038 1,1 %A A233038 _Alexei Kourbatov_, Dec 08 2013 %E A233038 Terms a(11) and beyond from b-file by _Andrew Howroyd_, Feb 05 2018