cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233042 Prime(k), where k is such that (1 + Sum_{j=1..k} prime(j)^9) / k is an integer.

This page as a plain text file.
%I A233042 #39 Jun 05 2021 15:25:08
%S A233042 2,3,7,13,29,37,43,421,487,3373,5399,6637,7333,117703,124679,130829,
%T A233042 218681,243263,374537,2326021,9423619,183040409,224628653,255740687,
%U A233042 419532599,707933033,932059759,2088543701,19690779263,27538667491,32425948213,51958163189,128193738073,1064987253349
%N A233042 Prime(k), where k is such that (1 + Sum_{j=1..k} prime(j)^9) / k is an integer.
%C A233042 a(49) > 1005368767096627. - _Bruce Garner_, Jun 05 2021
%H A233042 Bruce Garner, <a href="/A233042/b233042.txt">Table of n, a(n) for n = 1..48</a> (first 34 terms from Robert Price)
%H A233042 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a>
%e A233042 a(4) = 13, because 13 is the 6th prime and the sum of the first 6 primes^9+1 = 13004773992 when divided by 6 equals 2167462332 which is an integer.
%p A233042 A233042:=n->if type((1+add(ithprime(i)^9, i=1..n))/n, integer) then ithprime(n); fi; seq(A233042(n), n=1..100000); # _Wesley Ivan Hurt_, Dec 06 2013
%t A233042 t = {}; sm = 1; Do[sm = sm + Prime[n]^9; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
%o A233042 (PARI) is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^9); s==0 \\ _Charles R Greathouse IV_, Nov 30 2013
%Y A233042 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
%Y A233042 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.
%Y A233042 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.
%K A233042 nonn
%O A233042 1,1
%A A233042 _Robert Price_, Dec 03 2013