A233044 Pairs p, q for those partial sums p/q of the series e = sum_{n>=0} 1/n! that are not convergents to e.
1, 1, 5, 2, 65, 24, 163, 60, 1957, 720, 685, 252, 109601, 40320, 98641, 36288, 9864101, 3628800, 13563139, 4989600, 260412269, 95800320, 8463398743, 3113510400, 47395032961, 17435658240, 888656868019, 326918592000
Offset: 1
Keywords
Examples
1/1, 5/2, 65/24, 163/60, 1957/720, 685/252, 109601/40320, 98641/36288, 9864101/3628800, 13563139/4989600, 260412269/95800320, 8463398743/3113510400, 47395032961/17435658240, 888656868019/326918592000
References
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e?, (and a link to the primes 2, 5, 13, 37, 463), part I, in Tapas in Experimental Mathematics, T. Amdeberhan and V. H. Moll, eds., Contemp. Math., vol. 457, American Mathematical Society, Providence, RI, 2008, pp. 273-284.
Links
- B. Berndt, S. Kim, and A. Zaharescu, Diophantine approximation of the exponential function and Sondow's conjecture, abstract 2012.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly, 113 (2006), 637-641.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e?, (and a link to the primes 2, 5, 13, 37, 463), part II, in Gems in Experimental Mathematics, T. Amdeberhan, L. A. Medina, V. H. Moll, eds., Contemp. Math., vol. 517, American Mathematical Society, Providence, RI, 2010, pp. 349-363.
Comments