cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233073 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, antidiagonally or vertically, top left element zero, and 1 appearing before 2 in row major order.

Original entry on oeis.org

1, 2, 2, 5, 9, 5, 14, 50, 50, 14, 41, 289, 582, 289, 41, 122, 1682, 6854, 6854, 1682, 122, 365, 9801, 80811, 164495, 80811, 9801, 365, 1094, 57122, 952869, 3957778, 3957778, 952869, 57122, 1094, 3281, 332929, 11235652, 95264272, 194998895, 95264272
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2013

Keywords

Comments

Table starts
....1........2...........5.............14................41
....2........9..........50............289..............1682
....5.......50.........582...........6854.............80811
...14......289........6854.........164495...........3957778
...41.....1682.......80811........3957778.........194998895
..122.....9801......952869.......95264272........9622519979
..365....57122....11235652.....2293174089......475027244071
.1094...332929...132484030....55201144642....23452561697310
.3281..1940450..1562171807..1328800293991..1157902539075279
.9842.11309769.18420188169.31986846738550.57168401542703366

Examples

			Some solutions for n=4 k=4
..0..0..1..0....0..0..1..1....0..0..0..0....0..1..0..1....0..0..1..1
..1..1..0..0....0..0..1..0....1..0..2..2....1..0..0..0....0..1..1..1
..1..1..0..2....0..1..1..1....1..0..2..2....1..0..0..1....0..1..0..0
..0..1..0..2....1..3..1..3....1..0..0..2....0..0..1..1....0..0..0..2
		

Crossrefs

Column 1 is A007051(n-1)
Column 2 is A115599

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 7*a(n-1) -7*a(n-2) +a(n-3)
k=3: a(n) = 14*a(n-1) -28*a(n-2) +24*a(n-3) -11*a(n-4) +2*a(n-5) for n>6
k=4: [order 11] for n>12
k=5: [order 21] for n>23
k=6: [order 58] for n>60