A233082 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 in row major order.
1, 2, 3, 5, 14, 10, 14, 95, 122, 36, 41, 662, 1985, 1094, 136, 122, 4631, 32414, 41675, 9842, 528, 365, 32414, 529862, 1588262, 875165, 88574, 2080, 1094, 226895, 8662343, 60632429, 77824814, 18378455, 797162, 8256, 3281, 1588262, 141615905
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..3..1....0..1..3..1....0..0..0..1....0..0..1..1....0..0..1..0 ..1..1..3..2....3..2..3..2....2..0..1..0....2..3..1..3....2..3..2..3 ..3..3..2..3....3..3..3..2....2..3..1..3....1..1..3..2....1..3..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..241
Formula
Empirical for column k:
k=1: a(n) = 6*a(n-1) -8*a(n-2)
k=2: a(n) = 10*a(n-1) -9*a(n-2)
k=3: a(n) = 22*a(n-1) -21*a(n-2)
k=4: a(n) = 50*a(n-1) -49*a(n-2)
k=5: a(n) = 118*a(n-1) -411*a(n-2) +294*a(n-3)
k=6: a(n) = 283*a(n-1) -4251*a(n-2) +13573*a(n-3) -9604*a(n-4)
k=7: [order 6]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 8*a(n-1) -7*a(n-2) for n>3
n=3: a(n) = 19*a(n-1) -45*a(n-2) +27*a(n-3) for n>5
n=4: a(n) = 49*a(n-1) -450*a(n-2) +1466*a(n-3) -1853*a(n-4) +789*a(n-5) for n>8
n=5: [order 10] for n>14
n=6: [order 21] for n>26
n=7: [order 52] for n>58
Comments