A233106 Number of n X 1 0..5 arrays with no element x(i,j) adjacent to value 5-x(i,j) horizontally or vertically, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order.
1, 2, 6, 23, 99, 452, 2136, 10313, 50469, 249062, 1235466, 6147803, 30650439, 152986472, 764135196, 3818284493, 19084248009, 95399716682, 476934013326, 2384476356383, 11921800651179, 59607259863692, 298031069141856
Offset: 1
Keywords
Examples
Some solutions for n=7: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....0....0....1....0....1....1....1....0....1....1....0....1....0....1 ..2....2....0....1....5....1....5....2....1....1....5....5....1....0....1....2 ..1....4....1....5....1....5....2....0....1....5....1....5....2....4....2....5 ..5....0....1....1....1....4....0....3....5....5....1....1....1....2....1....5 ..1....2....2....0....2....5....3....5....1....2....1....0....5....4....3....2 ..5....2....0....1....5....4....1....2....0....5....5....0....2....2....3....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 9*a(n-1) - 23*a(n-2) + 15*a(n-3).
Conjectures from Colin Barker, Feb 19 2018: (Start)
G.f.: x*(1 - 7*x + 11*x^2) / ((1 - x)*(1 - 3*x)*(1 - 5*x)).
a(n) = (75 + 10*3^n + 3*5^n) / 120.
(End)
Comments