cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233129 T(n,k) = number of n X k 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally or vertically, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabeled 6-colorings with no clashing color pairs).

Original entry on oeis.org

1, 1, 1, 3, 8, 3, 10, 80, 80, 10, 36, 896, 2688, 896, 36, 136, 10496, 96256, 96256, 10496, 136, 528, 124928, 3497984, 10674176, 3497984, 124928, 528, 2080, 1495040, 127533056, 1189609472, 1189609472, 127533056, 1495040, 2080, 8256, 17924096
Offset: 1

Views

Author

R. H. Hardin, Dec 04 2013

Keywords

Comments

Table starts
.....1..........1...............3...................10
.....1..........8..............80..................896
.....3.........80............2688................96256
....10........896...........96256.............10674176
....36......10496.........3497984...........1189609472
...136.....124928.......127533056.........132682612736
...528....1495040......4653056000.......14800557965312
..2080...17924096....169793814528.....1651015493353472
..8256..215023616...6196127858688...184172904936636416
.32896.2580021248.226111237652480.20544737466392772608

Examples

			Some solutions for n=3 k=4
..0..1..0..1....0..1..5..2....0..1..2..4....0..1..5..4....0..1..0..4
..4..5..1..2....2..0..2..1....1..2..4..5....2..5..2..5....2..5..3..0
..5..4..0..4....4..3..5..3....2..1..2..4....0..3..0..4....0..3..0..2
		

Crossrefs

Column 1 is A007582(n-2).

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -8*a(n-2) for n>3
k=2: a(n) = 16*a(n-1) -48*a(n-2)
k=3: a(n) = 48*a(n-1) -448*a(n-2) +1024*a(n-3)
k=4: a(n) = 160*a(n-1) -6144*a(n-2) +86016*a(n-3) -393216*a(n-4)
k=5: [order 6]
k=6: [order 8]
k=7: [order 14]
Empirical for row n:
n=1: a(n) = 6*a(n-1) -8*a(n-2) for n>3
n=2: a(n) = 16*a(n-1) -48*a(n-2)
n=3: a(n) = 48*a(n-1) -448*a(n-2) +1024*a(n-3)
n=4: a(n) = 160*a(n-1) -6144*a(n-2) +86016*a(n-3) -393216*a(n-4)
n=5: [order 6]
n=6: [order 8]
n=7: [order 14]