This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233133 #26 Jun 06 2021 06:42:07 %S A233133 1,2,3,4,6,8,9,11,12,13,22,24,26,27,33,44,45,48,66,71,76,88,107,132, %T A233133 148,168,176,187,207,216,264,330,360,418,440,462,528,672,864,880,1056, %U A233133 1221,1276,1304,1340,1408,1465,1531,1672,1683,2153,2374,2760,3520 %N A233133 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^10. %C A233133 a(211) > 3.0*10^13. - _Bruce Garner_, Jun 06 2021 %H A233133 Bruce Garner, <a href="/A233133/b233133.txt">Table of n, a(n) for n = 1..210</a> (first 174 terms from Robert Price) %H A233133 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a> %e A233133 a(5)=6 because 1 plus the sum of the first 6 primes^10 is 164088217398 which is divisible by 6. %t A233133 p = 2; k = 0; s = 1; lst = {}; While[k < 41000000000, s = s + p^10; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *) %t A233133 Module[{nn=3600,sp},sp=Accumulate[Prime[Range[nn]]^10];Select[ Range[ nn],Divisible[ sp[[#]]+1,#]&]] (* _Harvey P. Dale_, Sep 18 2018 *) %Y A233133 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). %Y A233133 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. %Y A233133 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. %K A233133 nonn %O A233133 1,2 %A A233133 _Robert Price_, Dec 04 2013