A233134 Prime(k), where k is such that (1 + Sum_{j=1..k} prime(j)^10) / k is an integer.
2, 3, 5, 7, 13, 19, 23, 31, 37, 41, 79, 89, 101, 103, 137, 193, 197, 223, 317, 353, 383, 457, 587, 743, 857, 997, 1049, 1117, 1279, 1321, 1693, 2213, 2423, 2887, 3079, 3271, 3797, 5011, 6701, 6833, 8443, 9901, 10429, 10691, 11059, 11731, 12253, 12841, 14221
Offset: 1
Keywords
Examples
a(5) = 13, because 13 is the 6th prime and the sum of the first 6 primes^10+1 = 164088217398 when divided by 6 equals 27348036233 which is an integer.
Links
- Bruce Garner, Table of n, a(n) for n = 1..210 (first 174 terms from Robert Price)
- OEIS Wiki, Sums of powers of primes divisibility sequences
Crossrefs
Programs
-
Mathematica
t = {}; sm = 1; Do[sm = sm + Prime[n]^10; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
-
PARI
is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^10); s==0 \\ Charles R Greathouse IV, Nov 30 2013
Comments