cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233150 Number of ways to write n = k + m (k, m > 0) with 2^k + prime(m) prime.

Original entry on oeis.org

0, 0, 1, 2, 1, 4, 0, 6, 1, 4, 1, 3, 1, 8, 2, 3, 2, 5, 2, 8, 2, 2, 5, 4, 4, 6, 6, 3, 5, 5, 2, 5, 9, 4, 7, 3, 7, 5, 4, 5, 9, 4, 5, 6, 3, 8, 7, 5, 5, 11, 5, 7, 4, 6, 3, 6, 5, 6, 5, 6, 5, 6, 3, 4, 6, 3, 5, 4, 5, 7, 6, 4, 5, 5, 4, 3, 9, 6, 4, 5, 4, 6, 4, 3, 5, 8, 3, 7, 9, 10, 8, 7, 2, 8, 3, 6, 6, 8, 8, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 05 2013

Keywords

Comments

Conjecture: a(n) > 0 except for n = 1, 2, 7.
We have verified this for n up to 3*10^7. For n = 15687374, the least positive integer k with 2^k + prime(n-k) prime is 51299. For n = 28117716, the least positive integer k with 2^k + prime(n-k) prime is 81539.

Examples

			a(9) = 1 since 9 = 7 + 2 with 2^7 + prime(2) = 128 + 3 = 131 prime.
a(13) = 1 since 13 = 3 + 10 with 2^3 + prime(10) = 8 + 29 = 37 prime.
a(588) = 1 since 588 = 66 + 522 with 2^{66} + prime(522) = 2^{66} + 3739 = 73786976294838210203 prime.
a(1012) = 1 since 1012 = 317 + 695 with 2^{317} + prime(695) = 2^{317} + 5231 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2^k+Prime[n-k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]