A233150 Number of ways to write n = k + m (k, m > 0) with 2^k + prime(m) prime.
0, 0, 1, 2, 1, 4, 0, 6, 1, 4, 1, 3, 1, 8, 2, 3, 2, 5, 2, 8, 2, 2, 5, 4, 4, 6, 6, 3, 5, 5, 2, 5, 9, 4, 7, 3, 7, 5, 4, 5, 9, 4, 5, 6, 3, 8, 7, 5, 5, 11, 5, 7, 4, 6, 3, 6, 5, 6, 5, 6, 5, 6, 3, 4, 6, 3, 5, 4, 5, 7, 6, 4, 5, 5, 4, 3, 9, 6, 4, 5, 4, 6, 4, 3, 5, 8, 3, 7, 9, 10, 8, 7, 2, 8, 3, 6, 6, 8, 8, 3
Offset: 1
Keywords
Examples
a(9) = 1 since 9 = 7 + 2 with 2^7 + prime(2) = 128 + 3 = 131 prime. a(13) = 1 since 13 = 3 + 10 with 2^3 + prime(10) = 8 + 29 = 37 prime. a(588) = 1 since 588 = 66 + 522 with 2^{66} + prime(522) = 2^{66} + 3739 = 73786976294838210203 prime. a(1012) = 1 since 1012 = 317 + 695 with 2^{317} + prime(695) = 2^{317} + 5231 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..6000
- Zhi-Wei Sun, On a^n + b*n modulo m, preprint, arXiv:1312.1166 [math.NT], 2013-2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016.
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[2^k+Prime[n-k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments