cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A233151 Number of n X n 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

3, 24, 432, 17496, 1658232, 367125912, 191184793128, 234385100907480, 677856222475099560, 4627785508146660629232, 74650443539914896103253016, 2846446729148572555427535908448, 256684477494955879310882598953790768
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Examples

			Some solutions for n=4:
..2..2..1..2....1..0..1..2....1..0..1..2....0..1..0..0....0..0..1..2
..1..0..1..0....1..0..1..0....1..2..2..1....0..0..1..0....1..2..1..0
..0..0..0..0....0..0..0..1....1..2..2..1....0..0..1..2....1..0..0..0
..1..0..1..2....1..0..0..1....1..2..2..1....0..0..1..0....1..0..0..1
		

Crossrefs

Diagonal of A233155.

A233152 Number of n X 5 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

48, 648, 8856, 121176, 1658232, 22692312, 310536504, 4249585944, 58154132088, 795819434328, 10890517137336, 149033007242136, 2039465800159992, 27909392872041432, 381930508677741624, 5226588558469378584
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Examples

			Some solutions for n=4:
..1..2..1..2..2....0..1..2..1..0....2..1..0..0..0....1..2..1..2..2
..2..2..1..2..2....0..1..0..1..2....2..1..0..1..2....2..2..2..2..2
..2..2..1..2..1....0..1..2..1..0....2..1..0..1..2....2..1..2..1..2
..1..2..1..2..2....2..1..0..1..2....0..0..0..1..2....0..1..0..1..2
		

Crossrefs

Column 5 of A233155.

Formula

Empirical: a(n) = 15*a(n-1) - 18*a(n-2).
Empirical g.f.: 24*x*(2 - 3*x) / (1 - 15*x + 18*x^2). - Colin Barker, Oct 08 2018

A233153 Number of n X 6 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

96, 1944, 40392, 842616, 17587584, 367125912, 7663517136, 159971190624, 3339300422232, 69705848287656, 1455066835631064, 30373627879088352, 634030855481713176, 13235005291610993904, 276272619155126818272
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Examples

			Some solutions for n=3:
..0..0..1..2..2..2....1..0..1..2..2..1....0..1..0..1..2..1....2..1..0..1..2..2
..0..0..1..2..1..0....1..2..2..2..2..2....2..1..0..1..2..1....2..1..2..1..2..2
..1..0..1..0..1..2....1..2..1..2..2..1....0..1..2..1..2..2....2..2..2..2..1..0
		

Crossrefs

Column 6 of A233155.

Formula

Empirical: a(n) = 25*a(n-1) - 90*a(n-2) + 81*a(n-3).
Empirical g.f.: 24*x*(4 - 19*x + 18*x^2) / (1 - 25*x + 90*x^2 - 81*x^3). - Colin Barker, Oct 08 2018

A233154 Number of n X 7 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

192, 5832, 184248, 5871528, 187446312, 5986203912, 191184793128, 6106045615848, 195014812167432, 6228382893621192, 198922099117492008, 6353174267751532968, 202907688630068868552, 6480466044680473473672, 206973133655395034550888
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Examples

			Some solutions for n=2:
..0..0..1..0..1..2..1....1..2..1..0..1..2..2....2..2..1..2..2..1..0
..1..0..1..2..2..2..2....2..2..1..2..1..2..1....2..2..2..1..2..1..2
		

Crossrefs

Column 7 of A233155.

Formula

Empirical: a(n) = 42*a(n-1) - 351*a(n-2) + 972*a(n-3) - 810*a(n-4).
Empirical g.f.: 24*x*(8 - 93*x + 279*x^2 - 270*x^3) / ((1 - 3*x)*(1 - 39*x + 234*x^2 - 270*x^3)). - Colin Barker, Oct 08 2018

A233156 Number of 3 X n 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

27, 96, 432, 1944, 8856, 40392, 184248, 840456, 3833784, 17488008, 79772472, 363886344, 1659886776, 7571661192, 34538532408, 157549339656, 718669633464, 3278249488008, 14953908173112, 68213041889544, 311157393101496
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Examples

			Some solutions for n=5:
..1..0..0..0..1....1..0..1..0..1....0..0..0..1..2....0..1..0..0..1
..0..0..0..0..1....0..0..1..0..1....0..1..2..2..2....0..0..1..0..1
..0..0..1..0..1....1..2..1..0..1....0..1..2..2..2....0..0..0..0..1
		

Crossrefs

Row 3 of A233155.

Formula

Empirical: a(n) = 5*a(n-1) - 2*a(n-2) for n>4.
Empirical g.f.: 3*x*(9 - 13*x + 2*x^2 - 8*x^3) / (1 - 5*x + 2*x^2). - Colin Barker, Oct 09 2018

A233157 Number of 4 X n 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

81, 384, 2592, 17496, 121176, 842616, 5871528, 40931568, 285366888, 1989557640, 13871104848, 96708780360, 674249796360, 4700843090928, 32774093555112, 228499694410248, 1593090904911120, 11106967289377032, 77437340197187976
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Examples

			Some solutions for n=5:
..0..1..0..0..0....1..2..2..1..2....0..0..1..2..1....2..1..0..0..1
..0..0..0..0..0....2..1..2..2..2....1..2..1..0..1....0..0..1..2..1
..1..0..0..0..0....2..2..2..2..1....1..0..1..2..2....0..0..1..2..1
..0..1..0..0..1....2..1..2..2..2....1..2..1..2..2....1..0..1..0..1
		

Crossrefs

Row 4 of A233155.

Formula

Empirical: a(n) = 9*a(n-1) - 15*a(n-2) + 6*a(n-3) for n>7.
Empirical g.f.: 3*x*(27 - 115*x + 117*x^2 - 186*x^3 + 96*x^4 - 360*x^5 + 216*x^6) / (1 - 9*x + 15*x^2 - 6*x^3). - Colin Barker, Oct 09 2018

A233158 Number of 5Xn 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

243, 1536, 15552, 157464, 1658232, 17587584, 187446312, 2000708640, 21367730664, 228251103552, 2438324338248, 26048163809952, 278268995799144, 2972714012485056, 31757156984626632, 339258043287199008
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Row 5 of A233155

Examples

			Some solutions for n=4
..1..2..2..1....1..2..2..1....0..1..2..1....1..0..1..0....1..2..1..2
..2..1..2..1....2..1..2..1....2..1..0..1....0..0..1..2....2..2..2..2
..0..1..2..2....0..1..2..2....0..1..2..2....1..0..1..2....2..2..2..2
..2..1..2..2....2..2..2..1....2..1..2..1....1..2..2..2....2..2..2..1
..2..1..2..1....1..2..2..2....0..1..2..2....1..2..2..2....1..2..2..1
		

Formula

Empirical: a(n) = 16*a(n-1) -64*a(n-2) +76*a(n-3) +17*a(n-4) -84*a(n-5) +48*a(n-6) -8*a(n-7) for n>11

A233159 Number of 6Xn 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

729, 6144, 93312, 1417176, 22692312, 367125912, 5986203912, 97881138720, 1602873102744, 26263615856184, 430448561176896, 7055528832767376, 115652113962870744, 1895759819221508496, 31075287281252187264
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Row 6 of A233155

Examples

			Some solutions for n=3
..0..1..0....2..1..2....2..2..2....0..1..2....0..0..0....2..2..2....0..0..1
..2..1..0....2..2..2....2..2..1....2..2..1....1..0..0....1..2..2....1..2..1
..0..1..0....1..2..2....2..2..2....1..0..0....1..0..1....2..2..2....2..2..1
..0..1..0....1..2..2....2..1..2....0..1..0....1..0..1....2..1..2....1..0..0
..0..0..1....2..1..2....2..2..2....0..1..2....1..2..2....2..2..1....0..0..1
..0..0..0....0..1..0....1..2..2....0..1..2....2..2..1....2..2..2....0..0..1
		

Formula

Empirical: a(n) = 30*a(n-1) -283*a(n-2) +1038*a(n-3) -573*a(n-4) -6705*a(n-5) +21056*a(n-6) -27636*a(n-7) +17216*a(n-8) -4128*a(n-9) for n>15

A233160 Number of 7Xn 0..2 arrays with no element x(i,j) adjacent to value 2-x(i,j) horizontally or antidiagonally.

Original entry on oeis.org

2187, 24576, 559872, 12754584, 310536504, 7663517136, 191184793128, 4789657390320, 120299942406312, 3025032724863000, 76113694540561176, 1915649874890128728, 48219906337917976512, 1213839370935153274752
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Row 7 of A233155

Examples

			Some solutions for n=3
..0..1..0....0..0..0....0..1..0....0..1..0....0..0..0....0..0..0....0..0..0
..2..1..2....1..0..0....0..1..0....0..1..0....1..0..0....0..1..2....1..0..0
..2..2..1....1..0..1....0..1..2....2..1..2....1..0..0....0..1..0....0..1..2
..2..2..1....0..0..0....0..1..0....2..1..2....0..1..0....0..0..0....2..1..2
..1..2..1....0..0..1....0..1..2....2..1..2....0..1..0....0..0..1....0..1..2
..1..2..2....0..0..1....2..1..0....2..2..2....0..0..1....0..0..0....2..1..0
..2..2..2....0..0..1....2..1..2....1..2..2....1..0..1....0..1..0....0..0..0
		

Formula

Empirical: a(n) = 55*a(n-1) -1066*a(n-2) +8965*a(n-3) -19778*a(n-4) -225541*a(n-5) +2020719*a(n-6) -6851286*a(n-7) +7381301*a(n-8) +20655503*a(n-9) -79401996*a(n-10) +80882723*a(n-11) +65337447*a(n-12) -222811374*a(n-13) +135953338*a(n-14) +120111164*a(n-15) -197698384*a(n-16) +43440564*a(n-17) +76879396*a(n-18) -52839536*a(n-19) -1810608*a(n-20) +13170096*a(n-21) -4166800*a(n-22) -433792*a(n-23) +532928*a(n-24) -126464*a(n-25) +13056*a(n-26) -512*a(n-27) for n>33
Showing 1-9 of 9 results.