cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233174 T(n,k)=Number of nXk 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabelled 6-colorings with no clashing color pairs).

Original entry on oeis.org

1, 1, 3, 3, 8, 11, 10, 80, 80, 48, 36, 800, 2688, 896, 236, 136, 8576, 78336, 96256, 10496, 1248, 528, 92672, 2469888, 7938048, 3497984, 124928, 6896, 2080, 1009664, 76447744, 736362496, 808583168, 127533056, 1495040, 39168, 8256, 11018240
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2013

Keywords

Comments

Table starts
....1.......1..........3............10................36..................136
....3.......8.........80...........800..............8576................92672
...11......80.......2688.........78336...........2469888.............76447744
...48.....896......96256.......7938048.........736362496..........65265467392
..236...10496....3497984.....808583168......221463445504.......56275748519936
.1248..124928..127533056...82428559360....66799223701504....48667983827959808
.6896.1495040.4653056000.8403942375424.20170789919653888.42129429039341895680

Examples

			Some solutions for n=3 k=4
..0..1..0..2....0..1..2..5....0..1..2..4....0..1..5..2....0..1..2..1
..2..4..0..1....0..1..2..0....0..4..3..1....5..3..0..3....0..1..5..1
..5..1..5..4....5..1..3..5....3..4..5..4....5..4..5..3....0..4..2..4
		

Crossrefs

Column 1 is A233162(n+1)
Column 2 is A233123
Column 3 is A233124
Row 1 is A007582(n-2)

Formula

Empirical for column k:
k=1: a(n) = 12*a(n-1) -44*a(n-2) +48*a(n-3)
k=2: a(n) = 16*a(n-1) -48*a(n-2)
k=3: a(n) = 48*a(n-1) -448*a(n-2) +1024*a(n-3)
k=4: a(n) = 128*a(n-1) -2816*a(n-2) +16384*a(n-3)
k=5: [order 7]
k=6: [order 10]
k=7: [order 20]
Empirical for row n:
n=1: a(n) = 6*a(n-1) -8*a(n-2) for n>3
n=2: a(n) = 12*a(n-1) -128*a(n-3) for n>4
n=3: a(n) = 32*a(n-1) +64*a(n-2) -3072*a(n-3) +8192*a(n-4) for n>5
n=4: [order 7] for n>8
n=5: [order 10] for n>11
n=6: [order 24] for n>25
n=7: [order 47] for n>48