This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233194 #29 Jun 05 2021 11:33:52 %S A233194 2,3,7,11,13,29,37,59,79,197,449,1327,3931,197807,504197,1697743, %T A233194 2595641,6346793,6986909,8895379,55664759,63142507,99624919,129467011, %U A233194 131784857,239094833,494415377,951747371,957443177,9194035843,52411358381,62314028797,69216548567,220067593093,3295153668199 %N A233194 Prime(k), where k is such that (1 + Sum_{i=1..k} prime(i)^11) / k is an integer. %C A233194 a(47) > 1005368767096627. - _Bruce Garner_, Jun 05 2021 %H A233194 Bruce Garner, <a href="/A233194/b233194.txt">Table of n, a(n) for n = 1..46</a> %H A233194 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a> %e A233194 13 is a term because 13 is the 6th prime and the sum of the first 6 primes^11+1 = 2079498398712 when divided by 6 equals 346583066452 which is an integer. %t A233194 t = {}; sm = 1; Do[sm = sm + Prime[n]^11; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) %o A233194 (PARI) is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^11); s==0 \\ _Charles R Greathouse IV_, Nov 30 2013 %Y A233194 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). %Y A233194 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. %Y A233194 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. %K A233194 nonn %O A233194 1,1 %A A233194 _Robert Price_, Dec 05 2013 %E A233194 a(35) from _Karl-Heinz Hofmann_, Mar 07 2021