A233202 T(n,k)=Number of nXk 0..7 arrays with no element x(i,j) adjacent to itself or value 7-x(i,j) horizontally, antidiagonally or vertically, top left element zero, and 1 appearing before 2 3 4 5 and 6, 2 appearing before 3 4 and 5, and 3 appearing before 4 in row major order (unlabelled 8-colorings with no clashing color pairs).
1, 1, 1, 3, 3, 3, 11, 36, 36, 11, 48, 528, 1440, 528, 48, 236, 8256, 62720, 62720, 8256, 236, 1248, 131328, 2779136, 7802880, 2779136, 131328, 1248, 6896, 2098176, 123551744, 981532672, 981532672, 123551744, 2098176, 6896, 39168, 33558528
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..1..2..7....0..1..2..0....0..1..2..3....0..1..2..7....0..1..7..2 ..3..7..4..5....5..3..6..3....5..4..6..5....5..7..3..6....5..3..6..4 ..6..5..7..6....6..7..2..6....6..2..3..6....3..5..0..3....6..7..2..6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..180
Crossrefs
Column 1 is A233162
Formula
Empirical for column k:
k=1: a(n) = 12*a(n-1) -44*a(n-2) +48*a(n-3) for n>4
k=2: a(n) = 20*a(n-1) -64*a(n-2) for n>3
k=3: a(n) = 64*a(n-1) -960*a(n-2) +4096*a(n-3) for n>4
k=4: [order 5] for n>6
k=5: [order 10] for n>11
k=6: [order 22] for n>23
Comments