cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A233150 Number of ways to write n = k + m (k, m > 0) with 2^k + prime(m) prime.

Original entry on oeis.org

0, 0, 1, 2, 1, 4, 0, 6, 1, 4, 1, 3, 1, 8, 2, 3, 2, 5, 2, 8, 2, 2, 5, 4, 4, 6, 6, 3, 5, 5, 2, 5, 9, 4, 7, 3, 7, 5, 4, 5, 9, 4, 5, 6, 3, 8, 7, 5, 5, 11, 5, 7, 4, 6, 3, 6, 5, 6, 5, 6, 5, 6, 3, 4, 6, 3, 5, 4, 5, 7, 6, 4, 5, 5, 4, 3, 9, 6, 4, 5, 4, 6, 4, 3, 5, 8, 3, 7, 9, 10, 8, 7, 2, 8, 3, 6, 6, 8, 8, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 05 2013

Keywords

Comments

Conjecture: a(n) > 0 except for n = 1, 2, 7.
We have verified this for n up to 3*10^7. For n = 15687374, the least positive integer k with 2^k + prime(n-k) prime is 51299. For n = 28117716, the least positive integer k with 2^k + prime(n-k) prime is 81539.

Examples

			a(9) = 1 since 9 = 7 + 2 with 2^7 + prime(2) = 128 + 3 = 131 prime.
a(13) = 1 since 13 = 3 + 10 with 2^3 + prime(10) = 8 + 29 = 37 prime.
a(588) = 1 since 588 = 66 + 522 with 2^{66} + prime(522) = 2^{66} + 3739 = 73786976294838210203 prime.
a(1012) = 1 since 1012 = 317 + 695 with 2^{317} + prime(695) = 2^{317} + 5231 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2^k+Prime[n-k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A233206 Number of ways to write n = k + m (0 < k <= m) with k! + prime(m) prime.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 2, 2, 3, 1, 5, 2, 3, 5, 3, 3, 4, 7, 4, 4, 6, 3, 3, 5, 6, 4, 5, 4, 4, 2, 4, 4, 7, 9, 4, 6, 5, 5, 5, 6, 8, 8, 7, 8, 6, 5, 5, 5, 7, 8, 7, 7, 8, 7, 9, 7, 6, 10, 6, 6, 9, 4, 7, 4, 9, 8, 8, 5, 9, 6, 2, 6, 7, 3, 8, 8, 9, 9, 7, 6, 10, 8, 8, 11, 7, 7, 4, 6, 8, 8, 5, 8, 5, 8, 14, 8, 7, 10, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 05 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified this for n up to 10^7. For n = 1356199, the least positive integer k with k! + prime(n-k) prime is 4496. For n = 7212995, the smallest positive integer k with k! + prime(n-k) prime is 4507.

Examples

			a(6) = 1 since 6 = 3 + 3 with 3! + prime(3) = 6 + 5 = 11 prime.
a(11) = 1 since 11 = 4 + 7 with 4! + prime(7) = 24 + 17 = 41 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[k!+Prime[n-k]],1,0],{k,1,n/2}]
    Table[a[n],{n,1,100}]

A233296 a(n) = |{0 < k < n: k*prime(n-k) + 1 is prime}|.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 4, 2, 2, 5, 4, 1, 6, 1, 2, 5, 4, 4, 4, 3, 3, 2, 4, 6, 5, 4, 5, 6, 7, 7, 6, 5, 8, 6, 4, 5, 7, 8, 4, 6, 7, 6, 10, 7, 4, 8, 11, 9, 11, 6, 5, 5, 8, 8, 10, 5, 7, 10, 10, 11, 7, 6, 6, 12, 6, 10, 11, 6, 11, 7, 11, 8, 12, 7, 7, 9, 13, 9, 10, 14, 7, 13, 8, 10, 11, 9, 14, 10, 14, 17, 14, 13, 8, 12, 12
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 07 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Similarly, for any integer n > 2, k*prime(n-k) - 1 (or k^2*prime(n-k) - 1) is prime for some 0 < k < n.
(ii) Let n > 3 be an integer. Then k + prime(n-k) is prime for some 0 < k < n. Also, if n is not equal to 13, then k^2 + prime(n-k)^2 is prime for some 0 < k < n.

Examples

			a(17) = 1 since 17 = 14 + 3 with 14*prime(3) + 1 = 14*5 + 1 = 71 prime.
a(19) = 1 since 19 = 18 + 1 with 18*prime(1) + 1 = 18*2 + 1 = 37 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[k*Prime[n-k]+1],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A233439 a(n) = |{0 < k < n: prime(k)^2 + 4*prime(n-k)^2 is prime}|.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 2, 1, 3, 4, 4, 8, 4, 6, 3, 1, 7, 3, 8, 5, 2, 9, 2, 11, 8, 7, 5, 4, 8, 7, 8, 8, 8, 7, 5, 9, 5, 10, 9, 7, 13, 9, 11, 10, 14, 5, 11, 10, 10, 11, 12, 7, 13, 10, 10, 8, 15, 11, 12, 11, 13, 14, 6, 12, 11, 22, 21, 5, 15, 7, 13, 15, 17, 15, 10, 16, 11, 13, 14, 12, 17, 12, 16, 16, 19, 22, 17, 12, 19, 17, 19, 17, 16, 17, 18, 20, 19, 17, 10, 16
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 09 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3.
(ii) For any integer n > 10, prime(j)^3 + 2*prime(n-j)^2 is prime for some 0 < j < n, and prime(k)^3 + 2*prime(n-k)^3 is prime for some 0 < k < n.
(iii) If n > 5, then prime(k)^3 + 2*p(n-k)^3 is prime for some 0 < k < n, where p(.) is the partition function (A000041). If n > 2, then prime(k)^3 + 2*q(n-k)^3 is prime for some 0 < k < n, where q(.) is the strict partition function (A000009).

Examples

			a(4) = 1 since prime(3)^2 + 4*prime(1)^2 = 5^2 + 4*2^2 = 41 is prime.
a(6) = 1 since prime(5)^2 + 4*prime(1)^2 = 11^2 + 4*2^2 = 137 is prime.
a(8) = 1 since prime(3)^2 + 4*prime(5)^2 = 5^2 + 4*11^2 = 509 is prime.
a(16) = 1 since prime(6)^2 + 4*prime(10)^2 = 13^2 + 4*29^2 = 3533 is prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[Prime[k]^2+4*Prime[n-k]^2],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A237367 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that 2*k - 1, prime(k)^2 - 2 and prime(m)^2 - 2 are all prime.

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 3, 3, 2, 3, 2, 4, 3, 5, 2, 6, 3, 6, 2, 4, 3, 4, 2, 4, 3, 4, 4, 4, 3, 8, 3, 4, 5, 6, 6, 5, 6, 5, 5, 3, 4, 7, 5, 6, 3, 7, 3, 3, 5, 4, 5, 6, 5, 8, 10, 4, 5, 11, 6, 3, 6, 5, 5, 5, 6, 5, 8, 4, 3, 5, 6, 5, 1, 7, 6, 3, 3, 5, 6, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 07 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2, and a(n) = 1 only for n = 3, 73, 81, 534.
(ii) Any integer n > 2 can be written as k + m with k > 0 and m > 0 such that 2*k - 1, prime(k) + k*(k-1) and prime(m) + m*(m-1) are all prime.
(iii) Every n = 9, 10, ... can be written as k + m with k > 0 and m > 0 such that 6*k - 1, prime(k) + 2*k and prime(m) + 2*m are all prime.
Clearly, part (i) of this conjecture implies that there are infinitely many primes p with p^2 - 2 also prime. Similar comments apply to parts (ii) and (iii).

Examples

			a(3) = 1 since 3 = 2 + 1 with 2*2 - 1 = 3, prime(2)^2 - 2 = 3^2 - 2 = 7 and prime(1)^2 - 2 = 2^2 - 2 = 2 all prime.
a(73) = 1 since 73 = 55 + 18 with 2*55 - 1 = 109, prime(55)^2 - 2 = 257^2 - 2 = 66047 and prime(18)^2 - 2 = 61^2 - 2 = 3719 all prime.
a(81) = 1 since 81 = 34 + 47 with 2*34 - 1 = 67, prime(34)^2 - 2 = 139^2 - 2 = 19319 and prime(47)^2 - 2 = 211^2 - 2 = 44519 all prime.
a(534) = 1 since 534 = 100 + 434 with 2*100 - 1 = 199, prime(100)^2 - 2 = 541^2 - 2 = 292679 and prime(434)^2 - 2 = 3023^2 - 2 = 9138527 all prime.
		

Crossrefs

Programs

  • Mathematica
    pq[k_]:=PrimeQ[Prime[k]^2-2]
    a[n_]:=Sum[If[PrimeQ[2k-1]&&pq[k]&&pq[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]

A233529 a(n) = |{0 < k <= n/2: prime(k)*prime(n-k) - 6 is prime}|.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 1, 4, 5, 1, 5, 3, 2, 1, 2, 5, 5, 4, 5, 6, 5, 5, 4, 8, 5, 7, 4, 3, 6, 6, 4, 8, 6, 7, 7, 8, 7, 5, 5, 5, 7, 8, 6, 13, 9, 5, 3, 9, 6, 8, 11, 5, 9, 9, 10, 8, 9, 14, 9, 10, 13, 11, 6, 9, 12, 10, 12, 14, 10, 12, 7, 13, 9, 7, 7, 15, 12, 6, 10, 11, 12, 12, 9, 18, 15, 14, 11, 10, 10, 8, 13, 21, 9, 14
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 11 2013

Keywords

Comments

Conjectures:
(i) a(n) > 0 for all n > 5. Also, for any n > 5, 2*prime(k)*prime(n-k) - 3 is prime for some 0 < k < n.
(ii) For any n > 1 not among 3, 9, 13, 26, there is a positive integer k < n with prime(k)*prime(n-k) - 2 prime. For any n > 2 not among 8, 23, 33, there is a positive integer k < n with prime(k)*prime(n-k) - 4 prime.

Examples

			a(8) = 1 since prime(4)*prime(4) - 6 = 7*7 - 6 = 43 is prime.
a(10) = 1 since prime(3)*prime(7) - 6 = 5*17 - 6 = 79 is prime.
a(16) = 1 since prime(3)*prime(13) - 6 = 5*41 - 6 = 199 is prime.
a(20) = 1 since prime(7)*prime(13) - 6 = 17*41 - 6 = 691 is prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    a[n_]:=Sum[If[PQ[Prime[k]*Prime[n-k]-6],1,0],{k,1,n/2}]
    Table[a[n],{n,1,100}]
Showing 1-6 of 6 results.