A233242 Number of 4Xn 0..5 arrays with no element x(i,j) adjacent to value 5-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order.
48, 6046, 1409129, 338046654, 81477098771, 19645569858350, 4737126288340919, 1142266120892160404, 275435466571576824843, 66415959358015599726176, 16014929880282766959784607, 3861692004518641314432355642
Offset: 1
Keywords
Examples
Some solutions for n=2 ..0..1....0..1....0..1....0..1....0..1....0..0....0..1....0..1....0..1....0..1 ..2..2....2..2....2..2....1..2....2..1....1..2....5..4....2..0....2..0....2..4 ..1..2....4..4....0..1....2..1....0..1....5..5....2..4....0..4....4..5....2..4 ..1..2....2..2....3..4....1..2....5..3....5..5....4..0....0..4....3..5....2..5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 261*a(n-1) -3894*a(n-2) -228438*a(n-3) +2689194*a(n-4) +57510040*a(n-5) -258059784*a(n-6) -1989997012*a(n-7) +8744106144*a(n-8) +8456810274*a(n-9) -90329150058*a(n-10) +156901744724*a(n-11) -57108648251*a(n-12) -126001313693*a(n-13) +153480763210*a(n-14) -36878799916*a(n-15) -35471311024*a(n-16) +25150473568*a(n-17) -4487086464*a(n-18) -393804288*a(n-19) +117669888*a(n-20) +6635520*a(n-21) for n>22
Comments