This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233256 #6 Jun 02 2025 08:52:50 %S A233256 1,1,3,3,10,11,10,104,136,48,36,1184,4672,2080,236,136,13952,166400, %T A233256 221696,32896,1248,528,166400,6049792,23896064,10620928,524800,6896, %U A233256 2080,1992704,220626944,2647261184,3439984640,509640704,8390656,39168,8256 %N A233256 T(n,k)=Number of nXk 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabelled 6-colorings with no clashing color pairs). %C A233256 Table starts %C A233256 .......1...........1................3....................10 %C A233256 .......3..........10..............104..................1184 %C A233256 ......11.........136.............4672................166400 %C A233256 ......48........2080...........221696..............23896064 %C A233256 .....236.......32896.........10620928............3439984640 %C A233256 ....1248......524800........509640704..........495341010944 %C A233256 ....6896.....8390656......24461443072........71328837140480 %C A233256 ...39168...134225920....1174138781696.....10271348253261824 %C A233256 ..226496..2147516416...56358577635328...1479074079750225920 %C A233256 .1325568.34359869440.2705211055407104.212986666384520904704 %H A233256 R. H. Hardin, <a href="/A233256/b233256.txt">Table of n, a(n) for n = 1..240</a> %F A233256 Empirical for column k: %F A233256 k=1: a(n) = 12*a(n-1) -44*a(n-2) +48*a(n-3) %F A233256 k=2: a(n) = 20*a(n-1) -64*a(n-2) %F A233256 k=3: a(n) = 56*a(n-1) -384*a(n-2) %F A233256 k=4: a(n) = 160*a(n-1) -2304*a(n-2) %F A233256 k=5: a(n) = 512*a(n-1) -33792*a(n-2) +589824*a(n-3) %F A233256 k=6: a(n) = 1664*a(n-1) -471040*a(n-2) +44826624*a(n-3) -1358954496*a(n-4) %F A233256 k=7: [order 5] %F A233256 Empirical for row n: %F A233256 n=1: a(n) = 6*a(n-1) -8*a(n-2) for n>3 %F A233256 n=2: a(n) = 16*a(n-1) -48*a(n-2) for n>3 %F A233256 n=3: a(n) = 48*a(n-1) -448*a(n-2) +1024*a(n-3) for n>5 %F A233256 n=4: a(n) = 160*a(n-1) -6144*a(n-2) +86016*a(n-3) -393216*a(n-4) for n>8 %F A233256 n=5: [order 7] for n>11 %F A233256 n=6: [order 10] for n>16 %F A233256 n=7: [order 28] for n>34 %e A233256 Some solutions for n=3 k=4 %e A233256 ..0..1..0..2....0..1..0..2....0..1..2..4....0..1..0..2....0..1..2..4 %e A233256 ..5..3..5..2....2..1..0..4....3..4..2..4....3..4..0..4....2..0..3..1 %e A233256 ..4..3..1..5....5..2..0..3....3..1..5..4....3..1..5..1....4..0..2..0 %Y A233256 Column 1 is A233162(n+1) %Y A233256 Column 2 is A026244(n-1) %Y A233256 Row 1 is A007582(n-2) %K A233256 nonn,tabl %O A233256 1,3 %A A233256 _R. H. Hardin_, Dec 06 2013