cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233261 Number of 6Xn 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabeled 6-colorings with no clashing color pairs).

This page as a plain text file.
%I A233261 #8 Sep 25 2024 01:48:41
%S A233261 1248,524800,509640704,495341010944,507618560835584,
%T A233261 525597937107992576,548491734506604068864,573981067569027897884672,
%U A233261 601558225688924228943872000,630830989777808716060719841280
%N A233261 Number of 6Xn 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabeled 6-colorings with no clashing color pairs).
%C A233261 Row 6 of A233256
%H A233261 R. H. Hardin, <a href="/A233261/b233261.txt">Table of n, a(n) for n = 1..210</a>
%F A233261 Empirical: a(n) = 1984*a(n-1) -1282048*a(n-2) +346292224*a(n-3) -27028094976*a(n-4) -6584184864768*a(n-5) +1907721393668096*a(n-6) -214149680718675968*a(n-7) +12624715655426342912*a(n-8) -384499321786383466496*a(n-9) +4759259971017064316928*a(n-10) for n>16
%e A233261 Some solutions for n=2
%e A233261 ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
%e A233261 ..0..1....0..2....0..2....0..2....0..2....0..2....0..1....0..2....0..2....0..2
%e A233261 ..2..4....4..5....1..0....1..5....5..3....1..5....5..1....0..1....4..5....4..0
%e A233261 ..2..0....3..1....3..0....1..2....0..1....1..3....2..4....3..0....2..5....3..5
%e A233261 ..1..0....3..0....4..0....0..2....3..0....5..2....3..1....4..5....4..2....4..5
%e A233261 ..1..3....4..5....4..3....4..2....1..3....4..0....2..4....1..0....1..0....1..5
%K A233261 nonn
%O A233261 1,1
%A A233261 _R. H. Hardin_, Dec 06 2013