This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233266 #18 Jan 27 2025 10:31:50 %S A233266 1,0,2,10,24,70,276,820,2616,8702,27902,89500,291050,939222,3029950, %T A233266 9798606,31657182,102237766,330356240,1067310022,3447911968, %U A233266 11139391996,35988377472,116265759012,375619824338,1213515477460,3920484872552,12665878390278 %N A233266 Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, T, Z. %H A233266 Alois P. Heinz, <a href="/A233266/b233266.txt">Table of n, a(n) for n = 0..1000</a> %H A233266 Nicolas Bělohoubek and Antonín Slavík, <a href="https://msekce.karlin.mff.cuni.cz/~slavik/papers/L-tetromino-tilings.pdf">L-Tetromino Tilings and Two-Color Integer Compositions</a>, Univ. Karlova (Czechia, 2025). See p. 10. %H A233266 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetromino">Tetromino</a> %H A233266 <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (2, 4, 4, -6, -28, 15, 4, -13, 20, -4, 16, -10, 8, -2). %F A233266 G.f.: (x^8 -4*x^7 +3*x^6 -2*x^5 -2*x^4 -2*x^3 +2*x^2 +2*x -1) / (-2*x^14 +8*x^13 -10*x^12 +16*x^11 -4*x^10 +20*x^9 -13*x^8 +4*x^7 +15*x^6 -28*x^5 -6*x^4 +4*x^3 +4*x^2 +2*x -1). %e A233266 a(3) = 10: %e A233266 ._____. ._____. ._____. ._____. ._____. %e A233266 | |_. | | ._| | | .___| |___. | | .___| %e A233266 |_. | | | | ._| |_| | | | | |_| |_| ._| %e A233266 | |_|_| |_|_| | | ._| | | |_. | |___| | %e A233266 |_____| |_____| |_|___| |___|_| |_____| %e A233266 ._____. ._____. ._____. ._____. ._____. %e A233266 | ._| | | |_. | |_. ._| |_. ._| |___. | %e A233266 | |_. | | ._| | | |_| | | |_| | |_. |_| %e A233266 |_| |_| |_| |_| | |_. | | ._| | | |___| %e A233266 |_____| |_____| |___|_| |_|___| |_____|. %Y A233266 Cf. A084480, A174248, A226322, A230031, A232497, A233139, A233191, A242636. %K A233266 nonn,easy %O A233266 0,3 %A A233266 _Alois P. Heinz_, Dec 06 2013