cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A233302 Number of (2+1) X (n+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..2+1} nondecreasing.

Original entry on oeis.org

15, 42, 105, 232, 475, 904, 1632, 2806, 4642, 7414, 11500, 17368, 25636, 37054, 52579, 73354, 100799, 136586, 182749, 241654, 316129, 409430, 525392, 668390, 843514, 1056524, 1314050, 1623542, 1993496, 2433398, 2953979, 3567152, 4286297, 5126192
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Row 2 of A233301, row 3 of A267245.

Examples

			Some solutions for n=5:
..0..0..0..0..1..0....1..1..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..1
..0..0..0..0..0..1....0..0..1..1..1..1....0..0..0..0..0..1....0..1..1..1..1..1
..0..0..0..1..1..1....0..1..1..1..1..1....0..0..0..1..1..1....0..1..1..1..1..1
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) - 3*a(n-2) - 7*a(n-3) + 10*a(n-4) + 3*a(n-5) - 6*a(n-6) - 6*a(n-7) + 3*a(n-8) + 10*a(n-9) - 7*a(n-10) - 3*a(n-11) + 4*a(n-12) - a(n-13). - R. H. Hardin, Jan 17 2016.
Empirical g.f.: x*(15 - 18*x - 18*x^2 + 43*x^3 + 6*x^4 - 30*x^5 - 21*x^6 + 22*x^7 + 33*x^8 - 31*x^9 - 8*x^10 + 15*x^11 - 4*x^12) / ((1 - x)^8*(1 + x)^3*(1 + x + x^2)). - Colin Barker, Mar 19 2018

A233303 Number of (3+1)X(n+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..3+1} nondecreasing.

Original entry on oeis.org

31, 141, 567, 1986, 6292, 18205, 48913, 123084, 292784, 662512, 1434508, 2985639, 5997455, 11666253, 22040149, 40541549, 72770415, 127706638, 219494579, 370035418, 612722058, 997726253, 1599424522, 2526675993, 3936943281
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Row 3 of A233301, row 4 of A267245.

Examples

			Some solutions for n=5
..0..0..1..0..0..0....0..1..0..0..0..1....0..0..0..0..0..1....1..1..1..0..0..0
..1..0..0..1..0..0....0..0..0..1..1..1....1..0..1..0..0..1....0..0..0..1..1..1
..1..0..0..0..1..1....0..0..0..1..1..1....0..1..1..0..0..1....1..0..1..1..1..1
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..0..1..1..1....0..1..1..1..1..1
		

A233297 Number of (n+1)X(1+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..1+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..n+1} nondecreasing.

Original entry on oeis.org

7, 15, 31, 64, 129, 258, 515, 1029, 2055, 4107, 8211, 16410, 32811, 65624, 131224, 262372, 524634, 1049237, 2098363, 4196161, 8391728, 16783688, 33567165, 67128918, 134250383, 268502449, 536999938, 1073948247, 2147837919, 4295732271
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Column 1 of A233301

Examples

			Some solutions for n=5
..0..0....1..0....1..0....0..0....0..1....0..0....0..1....1..0....1..0....0..0
..0..0....1..0....1..0....0..0....0..1....0..0....1..0....1..0....1..0....0..0
..0..1....0..1....1..0....0..1....0..1....0..0....1..0....1..0....0..1....0..0
..0..1....0..1....0..1....0..1....0..1....1..1....0..1....1..0....0..1....0..0
..1..0....1..0....0..1....0..1....0..1....1..1....1..1....0..1....1..1....0..0
..0..1....0..1....1..1....0..1....1..1....1..1....1..1....0..1....1..1....1..1
		

A233304 Number of (4+1) X (n+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..4+1} nondecreasing.

Original entry on oeis.org

64, 502, 3556, 21957, 122022, 616439, 2871477, 12451710, 50714574, 195371008, 716295219, 2512238327, 8466906587, 27527291020, 86628418167, 264674530948, 787179022872, 2284373978387, 6482027000245, 18018759544172, 49152990387893
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Row 4 of A233301.

Examples

			Some solutions for n=4
..0..0..1..0..0....0..0..0..0..1....0..1..0..0..1....0..0..0..0..0
..0..0..0..1..1....0..0..0..1..1....1..0..0..0..1....0..0..0..0..1
..1..0..0..0..1....1..0..0..1..0....0..0..0..1..1....0..0..0..1..1
..0..1..1..1..1....1..0..0..0..1....0..1..0..0..1....0..1..1..1..1
..1..1..1..1..1....0..1..1..1..1....0..0..1..1..1....0..1..1..1..1
		

Crossrefs

Cf. A233301.

A233298 Number of (n+1) X (2+1) 0..1 arrays x(i,j) with row sums Sum_{j=1..2+1} x(i,j) nondecreasing, and column sums Sum_{i=1..n+1} i^2*x(i,j) nondecreasing.

Original entry on oeis.org

13, 42, 141, 502, 1739, 5964, 20185, 67609, 224165, 737347, 2407911, 7814616, 25223004, 81015137, 259099567, 825507109, 2621224089, 8298060296, 26197890927, 82506334112, 259260476024
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Column 2 of A233301.

Examples

			Some solutions for n=5
..0..1..0....1..1..0....0..0..0....0..0..0....0..0..1....0..0..0....1..0..0
..1..1..0....1..1..0....0..0..0....0..1..0....0..1..0....0..0..0....0..0..1
..0..1..1....1..0..1....1..0..0....0..0..1....0..1..0....0..0..0....1..1..0
..0..1..1....0..1..1....0..1..0....0..0..1....0..0..1....0..0..0....1..1..0
..1..0..1....0..1..1....0..0..1....0..0..1....1..0..0....0..0..1....1..0..1
..0..1..1....1..1..1....1..1..1....1..1..1....0..1..1....0..1..1....0..1..1
		

Crossrefs

Cf. A233301.

A233299 Number of (n+1)X(3+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..3+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..n+1} nondecreasing.

Original entry on oeis.org

22, 105, 567, 3556, 21856, 135636, 836259, 5134856, 31326263, 190404404, 1153108628, 6966626079, 42004555617, 252889763684
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Column 3 of A233301

Examples

			Some solutions for n=5
..1..0..0..0....0..0..0..1....0..1..1..0....0..0..1..0....0..1..1..0
..1..0..0..1....1..0..0..0....0..1..0..1....0..0..0..1....0..1..1..0
..1..1..0..0....0..0..0..1....1..0..0..1....0..0..1..0....1..1..0..0
..1..1..0..0....1..1..0..0....0..1..1..0....0..0..0..1....0..0..1..1
..1..0..1..1....0..0..1..1....0..1..0..1....0..0..0..1....1..0..0..1
..0..1..1..1....0..1..1..1....0..0..1..1....0..1..1..1....0..1..1..1
		

A233300 Number of (n+1)X(4+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..4+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..n+1} nondecreasing.

Original entry on oeis.org

34, 232, 1986, 21957, 239330, 2694620, 30257296, 338790472, 3761876941, 41492573432
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Column 4 of A233301

Examples

			Some solutions for n=5
..0..0..0..0..0....0..0..0..0..0....0..0..1..0..1....0..0..0..1..1
..0..0..1..0..0....0..0..1..1..1....0..0..1..0..1....0..1..1..0..0
..1..0..0..1..1....0..1..0..1..1....1..1..0..0..0....1..0..0..1..0
..1..0..1..0..1....0..1..1..1..1....1..0..1..0..1....0..0..1..1..0
..0..0..1..1..1....1..0..1..1..1....0..0..1..1..1....1..0..0..0..1
..0..1..0..1..1....1..1..1..1..1....0..1..0..1..1....0..1..1..1..1
		

A233305 Number of (5+1) X (n+1) 0..1 arrays x(i,j) with row sums Sum_{j=1..n+1} x(i,j) nondecreasing, and column sums Sum_{i=1..5+1} i^2*x(i,j) nondecreasing.

Original entry on oeis.org

129, 1739, 21856, 239330, 2353493, 20916337, 170084407, 1276676471, 8918067742, 58369345796, 360074924787, 2104323603081, 11702598417138, 62173159707627
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Row 5 of A233301.

Examples

			Some solutions for n=4
..0..0..1..1..0....0..0..0..1..0....0..0..0..0..1....0..0..0..1..1
..0..0..1..0..1....0..0..1..1..1....0..0..1..0..1....1..0..1..1..0
..0..1..0..1..0....0..1..1..1..0....1..0..1..0..0....1..0..1..0..1
..0..0..1..1..0....1..0..1..0..1....0..0..1..1..1....1..0..1..0..1
..1..0..1..0..1....0..1..0..1..1....0..1..0..1..1....1..1..0..1..1
..0..1..0..1..1....0..0..1..1..1....0..0..1..1..1....0..1..1..1..1
		

Crossrefs

Cf. A233301.

A233306 Number of (6+1)X(n+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..6+1} nondecreasing.

Original entry on oeis.org

258, 5964, 135636, 2694620, 48504411, 789640245, 11764401320, 161499728247, 2058135563687
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Row 6 of A233301

Examples

			Some solutions for n=3
..0..0..1..0....0..1..0..0....0..0..0..0....0..0..0..0....0..1..0..0
..1..1..0..0....0..1..0..0....0..0..0..0....1..0..1..0....1..0..0..0
..1..0..1..0....0..0..1..0....0..1..0..0....1..0..1..0....0..0..0..1
..0..1..0..1....1..1..0..0....0..0..0..1....0..0..1..1....0..0..1..0
..0..1..1..0....1..0..1..0....0..0..1..0....1..1..0..1....0..0..0..1
..0..1..0..1....0..0..1..1....0..0..0..1....0..1..1..1....1..0..1..0
..1..0..1..1....0..1..0..1....0..1..1..1....1..1..1..1....0..1..0..1
		
Showing 1-9 of 9 results.