cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233302 Number of (2+1) X (n+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..2+1} nondecreasing.

Original entry on oeis.org

15, 42, 105, 232, 475, 904, 1632, 2806, 4642, 7414, 11500, 17368, 25636, 37054, 52579, 73354, 100799, 136586, 182749, 241654, 316129, 409430, 525392, 668390, 843514, 1056524, 1314050, 1623542, 1993496, 2433398, 2953979, 3567152, 4286297, 5126192
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2013

Keywords

Comments

Row 2 of A233301, row 3 of A267245.

Examples

			Some solutions for n=5:
..0..0..0..0..1..0....1..1..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..1
..0..0..0..0..0..1....0..0..1..1..1..1....0..0..0..0..0..1....0..1..1..1..1..1
..0..0..0..1..1..1....0..1..1..1..1..1....0..0..0..1..1..1....0..1..1..1..1..1
		

Crossrefs

Formula

Empirical: a(n) = 4*a(n-1) - 3*a(n-2) - 7*a(n-3) + 10*a(n-4) + 3*a(n-5) - 6*a(n-6) - 6*a(n-7) + 3*a(n-8) + 10*a(n-9) - 7*a(n-10) - 3*a(n-11) + 4*a(n-12) - a(n-13). - R. H. Hardin, Jan 17 2016.
Empirical g.f.: x*(15 - 18*x - 18*x^2 + 43*x^3 + 6*x^4 - 30*x^5 - 21*x^6 + 22*x^7 + 33*x^8 - 31*x^9 - 8*x^10 + 15*x^11 - 4*x^12) / ((1 - x)^8*(1 + x)^3*(1 + x + x^2)). - Colin Barker, Mar 19 2018