cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233307 a(n) = |{0 < k < n: p(k)^2 + q(n-k)^2 is prime}|, where p(.) is the partition function (A000041) and q(.) is the strict partition function (A000009).

This page as a plain text file.
%I A233307 #19 Aug 05 2019 09:26:21
%S A233307 0,1,2,2,1,1,4,2,3,2,2,4,4,3,2,2,5,3,1,5,3,5,6,3,3,2,2,1,1,2,2,5,3,4,
%T A233307 3,5,3,1,6,4,7,10,3,5,4,2,4,5,3,4,2,3,7,9,5,6,8,2,5,3,3,5,4,3,5,4,6,7,
%U A233307 6,3,2,9,8,6,1,6,7,7,6,2,5,8,4,6,2,6,4,8,7,3,5,3,3,5,4,5,8,5,6,2
%N A233307 a(n) = |{0 < k < n: p(k)^2 + q(n-k)^2 is prime}|, where p(.) is the partition function (A000041) and q(.) is the strict partition function (A000009).
%C A233307 Conjecture: (i) a(n) > 0 for all n > 1. Also, for any integer n > 4, p(k)*q(n-k) - 1 is prime for some 0 < k < n/2.
%C A233307 (ii) If n > 9, then prime(k)*p(n-k) + 1 is prime for some 0 < k < n. If n > 2, then prime(k)*q(n-k) - 1 is prime for some 0 < k < n, and also prime(k)*q(n-k) + 1 is prime for some 0 < k < n.
%C A233307 (iii) If n > 11, then prime(k) + p(n-k) is prime for some 0 < k < n. If n > 4, then prime(k) + q(n-k) is prime for some 0 < k < n, and also prime(k)^2 + q(n-k)^2 is prime for some 0 < k < n.
%H A233307 Zhi-Wei Sun, <a href="/A233307/b233307.txt">Table of n, a(n) for n = 1..10000</a>
%H A233307 Z.-W. Sun, <a href="http://arxiv.org/abs/1312.1166">On a^n+ bn modulo m</a>, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
%e A233307 a(5) = 1 since 5 = 1 + 4 with p(1)^2 + q(4)^2 = 1^2 + 2^2 = 5 prime.
%e A233307 a(6) = 1 since 6 = 3 + 3 with p(3)^2 + q(3)^2 = 3^2 + 2^2 = 13 prime.
%e A233307 a(19) = 1 since 19 = 3 + 16 with p(3)^2 + q(16)^2 = 3^2 + 32^2 = 1033 prime.
%e A233307 a(28) = 1 since 28 = 3 + 25 with p(3)^2 + q(25)^2 = 3^2 + 142^2 = 20173 prime.
%e A233307 a(29) = 1 since 29 = 6 + 23 with p(6)^2 + q(23)^2 = 11^2 + 104^2 = 10937 prime.
%e A233307 a(38) = 1 since 38 = 1 + 37 with p(1)^2 + q(37)^2 = 1^2 + 760^2 = 577601 prime.
%e A233307 a(75) = 1 since 75 = 13 + 62 with p(13)^2 + q(62)^2 = 101^2 + 13394^2 = 179409437 prime.
%e A233307 a(160) = 1 since 160 = 48 + 112 with p(48)^2 + q(112)^2 = 147273^2 + 1177438^2 = 1408049580373 prime.
%e A233307 a(210) = 1 since 210 = 71 + 139 with p(71)^2 + q(139)^2 = 4697205^2 + 8953856^2 = 102235272080761 prime.
%t A233307 a[n_]:=Sum[If[PrimeQ[PartitionsP[k]^2+PartitionsQ[n-k]^2],1,0],{k,1,n-1}]
%t A233307 Table[a[n],{n,1,100}]
%Y A233307 Cf. A000009, A000040, A000041, A231201, A232504.
%K A233307 nonn
%O A233307 1,3
%A A233307 _Zhi-Wei Sun_, Dec 07 2013