This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233317 #13 Feb 16 2025 08:33:21 %S A233317 108,1728,8748,12348,27648,67500,139968,197568,259308,442368,707472, %T A233317 708588,1000188,1080000,1581228,2239488,3084588,3161088,4148928, %U A233317 5467500,7077888,7717500,9020268,11319552,11337408,14074668,16003008,17280000,21003948,25299648 %N A233317 Integer areas A of the integer-sided triangles such that the inradius and the radius of the three excircles are perfect squares. %C A233317 Subset of A185210. %C A233317 A = sqrt(s*(p-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula); %C A233317 The inradius is r = A/s; %C A233317 The radii of the three excircles are r1 = 2*A/(-a+b+c); x2 = 2*A*b/(a-b+c); x3 = 2*A*c/(a+b-c). %C A233317 The areas A of the primitive triangles of sides (a,b,c) are 108, 12348, ... %C A233317 The areas of the nonprimitive triangles of sides (a*p^2, b*p^2, c*p^2) are in the sequence with the value A*p^4. %C A233317 The following table gives the first values (A, a, b, c, r, r1, r2, r3) where A is the area of the triangle, a, b, c the integer sides, r, r1, r2 and r3 are respectively the length of the inradius and the radius of the three excircles. %C A233317 +--------+-----+------+------+------+------+------+------+ %C A233317 | A | a | b | c | r | r1 | r2 | r3 | %C A233317 +--------+-----+------+------+------+------+------+------+ %C A233317 | 108 | 15 | 15 | 24 | 2^2 | 3^2 | 3^2 | 6^2 | %C A233317 | 1728 | 60 | 60 | 96 | 4^2 | 6^2 | 6^2 | 12^2 | %C A233317 | 8748 | 135 | 135 | 216 | 6^2 | 9^2 | 9^2 | 18^2 | %C A233317 | 12348 | 91 | 280 | 315 | 6^2 | 7^2 | 14^2 | 21^2 | %C A233317 | 27648 | 240 | 240 | 384 | 8^2 | 12^2 | 12^2 | 24^2 | %C A233317 | 67500 | 375 | 375 | 600 | 10^2 | 15^2 | 15^2 | 30^2 | %C A233317 | 139968 | 540 | 540 | 864 | 12^2 | 18^2 | 18^2 | 36^2 | %C A233317 | 197568 | 364 | 1120 | 1260 | 12^2 | 14^2 | 28^2 | 42^2 | %C A233317 | 259308 | 735 | 735 | 1176 | 14^2 | 21^2 | 21^2 | 42^2 | %C A233317 +--------+-----+------+------+------+------+------+------+ %H A233317 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Excircles.html">Excircles</a>. %H A233317 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Exradius.html">Exradius</a>. %H A233317 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Inradius.html">Inradius</a>. %t A233317 nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[area2>0&& IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]] && IntegerQ[Sqrt[2*Sqrt[area2]/(-a+b+c)]] && IntegerQ[Sqrt[2*Sqrt[area2]/(a-b+c)]] && IntegerQ[Sqrt[2*Sqrt[area2]/(a+b-c)]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst] %Y A233317 Cf. A185210. %K A233317 nonn %O A233317 1,1 %A A233317 _Michel Lagneau_, Dec 07 2013