This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233319 #6 Dec 07 2013 12:43:14 %S A233319 1,1,3,33,726,25236,1229328,78167484,6193726506,592068123054, %T A233319 66673324219176,8685890001564984,1290531658541292252, %U A233319 216188985806157611520,40449991773179254230432,8386998677130790903212000,1914263814914709029067344724,478208364783447353623777136772 %N A233319 E.g.f. A(x) satisfies: A'(x) = A(x*A'(x))^3. %C A233319 CONJECTURES: %C A233319 a(n) == 0 (mod 2) for n>=4. %C A233319 a(n) == 0 (mod 2^2) for n>=10. %C A233319 a(n) == 0 (mod 2^3) for n>=18. %C A233319 a(n) == 0 (mod 2^k) for n>=(8*k-6), k>=2. %C A233319 a(n) == 0 (mod 3) for n>=2. %C A233319 a(n) == 0 (mod 3^2) for n>=5. %C A233319 a(n) == 0 (mod 3^3) for n>=7. %C A233319 a(n) == 0 (mod 3^4) for n>=10. %C A233319 a(n) == 0 (mod 3^k) for n>=(3*k-2), k>=3. %C A233319 a(n) == 0 (mod 13) for n>=13. %H A233319 Paul D. Hanna, <a href="/A233319/b233319.txt">Table of n, a(n) for n = 0..100</a> %F A233319 E.g.f. A(x) satisfies: A(x)^3 = A'(x/A(x)^3). %F A233319 E.g.f. A(x) satisfies: A(x) = ( x / Series_Reversion( x*A'(x) ) )^(1/3). %F A233319 a(n) = [x^(n-1)/(n-1)!] A(x)^(3*n)/n for n>=1. %e A233319 E.g.f.: A(x) = 1 + x + 3*x^2/2! + 33*x^3/3! + 726*x^4/4! + 25236*x^5/5! +... %e A233319 such that %e A233319 A(x*A'(x))^3 = A'(x) = 1 + 3*x + 33*x^2/2! + 726*x^3/3! + 25236*x^4/4! +... %e A233319 A(x*A'(x)) = (A'(x))^(1/3) = 1 + x + 9*x^2/2! + 186*x^3/3! + 6330*x^4/4! + 306846*x^5/5! + 19560006*x^6/6! + 1559472498*x^7/7! +... %e A233319 To illustrate a(n) = [x^(n-1)/(n-1)!] A(x)^(3*n)/n, create a table of coefficients of x^k/k!, k>=0, in A(x)^(3*n) like so: %e A233319 A^3: [1, 3, 15, 159, 3240, 106218, 4961250, 305900982, ...]; %e A233319 A^6: [1, 6, 48, 588, 11646, 357336, 15709968, 923153004, ...]; %e A233319 A^9: [1, 9, 99, 1449, 30078, 899964, 37750104, 2118453588, ...]; %e A233319 A^12:[1, 12, 168, 2904, 65340, 1977912, 80833248, 4365682056, ...]; %e A233319 A^15:[1, 15, 255, 5115, 126180, 3961350, 161145630, 8476536330, ...]; %e A233319 A^18:[1, 18, 360, 8244, 223290, 7375968, 304020000, 15786282132, ...]; %e A233319 A^21:[1, 21, 483, 12453, 369306, 12932136, 547172388, 28405637064, ...]; %e A233319 A^24:[1, 24, 624, 17904, 578808, 21554064, 944463744, 49549812048, ...]; ... %e A233319 then the diagonal in the above table generates this sequence shift left: %e A233319 [1/1, 6/2, 99/3, 2904/4, 126180/5, 7375968/6, 547172388/7, 49549812048/8, ...]. %e A233319 SUMS OF TERM RESIDUES MODULO 2^n. %e A233319 Given a(k) == 0 (mod 2^n) for k>=(8*n-6) for n>=2, then it is interesting to consider the sums of the residues of all terms modulo 2^n for n>=1. %e A233319 Let b(n) = Sum_{k>=0} a(k) (mod 2^n) for n>=1, then the sequence {b(n)} begins: %e A233319 [4, 12, 40, 112, 336, 848, 2128, 5584, 13776, 29648, 64464, 136144, 316368, ...]. %e A233319 SUMS OF TERM RESIDUES MODULO 3^n. %e A233319 Given a(k) == 0 (mod 3^n) for k>=(3*n-2) for n>=3, then it is interesting to consider the sums of the residues of all terms modulo 3^n for n>=1. %e A233319 Let c(n) = Sum_{k>=0} a(k) (mod 3^n) for n>=1, then the sequence {c(n)} begins: %e A233319 [2, 17, 71, 368, 1340, 4985, 13733, 59660, 217124, 689516, 2520035, 6594416, 18286118, 72493100, 206416232, 722976884, 2617032608, 8170059617, 25603981622, 93015146708, 256894013555, 832213439720, 2338504300952, 6292517811686, 24650437682951, 71251311202316, 249181919185346, 729594560739527, ...]. %o A233319 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(subst(A^3, x, x*A' +x*O(x^n)))); n!*polcoeff(A, n)} %o A233319 for(n=0, 25, print1(a(n), ", ")) %o A233319 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(1/x*serreverse(x/A^3 +x*O(x^n)))); n!*polcoeff(A, n)} %o A233319 for(n=0, 25, print1(a(n), ", ")) %Y A233319 Cf. A232686, A231619, A231866, A231899, A232694, A232695, A232696. %K A233319 nonn %O A233319 0,3 %A A233319 _Paul D. Hanna_, Dec 07 2013