This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233322 #33 Oct 10 2017 05:51:29 %S A233322 1,1,2,1,1,2,1,3,3,4,1,2,3,3,4,1,4,5,6,6,7,1,2,5,5,6,6,7,1,5,7,10,10, %T A233322 11,11,12,1,3,7,8,10,10,11,11,12,1,6,9,14,15,17,17,18,18,19,1,3,9,11, %U A233322 15,15,17,17,18,18,19,1,7,12,20,22,26,26,28,28,29,29,30 %N A233322 Triangle read by rows: T(n,k) = number of palindromic partitions of n in which no part exceeds k, 1 <= k <= n. %C A233322 See A025065 for a definition of palindromic partition. %H A233322 Andrew Howroyd, <a href="/A233322/b233322.txt">Table of n, a(n) for n = 1..1275</a> %F A233322 T(n,k) = Sum_{i=1..k} A233321(n,i). %F A233322 T(n,k) = Sum_{i=0..(k+2*floor(n/2)-n)/2} A026820(floor(n/2)-i, k). - _Andrew Howroyd_, Oct 09 2017 %e A233322 Triangle begins: %e A233322 1; %e A233322 1, 2; %e A233322 1, 1, 2; %e A233322 1, 3, 3, 4; %e A233322 1, 2, 3, 3, 4; %e A233322 1, 4, 5, 6, 6, 7; %e A233322 1, 2, 5, 5, 6, 6, 7; %e A233322 1, 5, 7, 10, 10, 11, 11, 12; %e A233322 1, 3, 7, 8, 10, 10, 11, 11, 12; %e A233322 1, 6, 9, 14, 15, 17, 17, 18, 18, 19; %e A233322 1, 3, 9, 11, 15, 15, 17, 17, 18, 18, 19; %e A233322 1, 7, 12, 20, 22, 26, 26, 28, 28, 29, 29, 30; %e A233322 ... %t A233322 (* run this first: *) %t A233322 Needs["Combinatorica`"]; %t A233322 (* run the following in a different cell: *) %t A233322 a233321[n_] := {}; ; Do[Do[a = Partitions[n]; count = 0; Do[If[Max[a[[j]]] == k, x = Permutations[a[[j]]]; Do[If[x[[m]] == Reverse[x[[m]]], count++; Break[]], {m, Length[x]}]], {j, Length[a]}]; AppendTo[a233321[n], count], {k, n}], {n, nmax}]; a233322[n_] := {}; Do[Do[AppendTo[a233322[n], Sum[a233321[n][[j]], {j, k}]], {k, n}], {n,nmax}]; Table[a233322[n], {n, nmax}](* _L. Edson Jeffery_, Oct 09 2017 *) %o A233322 (PARI) \\ here PartitionCount is A026820. %o A233322 PartitionCount(n,maxpartsize)={my(t=0); forpart(p=n, t++, maxpartsize); t} %o A233322 T(n,k)=sum(i=0, (k-n%2)\2, PartitionCount(n\2-i, k)); %o A233322 for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ _Andrew Howroyd_, Oct 09 2017 %Y A233322 Cf. A025065, A026820; partial sums of row entries of A233321. %Y A233322 Cf. A233323, A233324 (palindromic compositions of n). %K A233322 nonn,tabl %O A233322 1,3 %A A233322 _L. Edson Jeffery_, Dec 10 2013 %E A233322 Corrected row 7 as communicated by _Andrew Howroyd_. - _L. Edson Jeffery_, Oct 09 2017