A233330 Irregular array read by rows: T(n,k) = number of r_{n,k}-cores associated with A233332(n,k), for n>=2, 1<=k<=floor(n/2), explained below.
1, 16, 64, 81, 169, 225, 361, 484, 527, 676, 900, 1018, 1156, 1521, 1752, 1831, 1849, 2401, 2789, 2989, 2809, 3600, 4195, 4564, 4689, 4096, 5184, 6042, 6634, 6936, 5776, 7225, 8408, 9283, 9820, 10001, 7921, 9801, 11377, 12601, 13437, 13861, 10609, 12996, 15039
Offset: 2
Examples
Array begins: {1}; {16}; {64, 81}; {169, 225}; {361, 484, 527}; ...
References
- Marjorie Senechal, Quasicrystals and Geometry, Cambridge University Press, 1995, p. 145.
Links
- Dirk Frettlöh, Glossary of tiling-theoretic terms, Tilings Encyclopedia.
- L. E. Jeffery, Algorithm for constructing A233332.
- Eric W. Weisstein, Corona, from MathWorld.
- Eric W. Weisstein, Tiling, from MathWorld.
Programs
-
Mathematica
maxn := 13; t[n_, m_, i_] := 1 + Mod[Floor[m/(n - 1)^(4 - i)], n - 1]; e[n_, k_, m_, 1] := -t[n, m, 1] + k + t[n, m, 4]; e[n_, k_, m_, 2] := -t[n, m, 2] - k + n + t[n, m, 1]; e[n_, k_, m_, 3] := -t[n, m, 3] + k + t[n, m, 2]; e[n_, k_, m_, 4] := -t[n, m, 4] - k + n + t[n, m, 3]; cores[n_, k_] := Sum[Product[If[e[n, k, m, i] >= 0, 1, 0], {i, 1, 4}], {m, 0, (n - 1)^4 - 1}]; Flatten[Table[cores[n, k], {n, 2, maxn}, {k, 1, Floor[n/2]}]] (* L. Edson Jeffery, Jul 22 2014 *)
Formula
The Jeffery PDF contains an algorithm for constructing this array.
Conjecture: The entries of column k satisfy sum{h=0..5} ((-1)^h*binomial(5,h)*A(n+5-h,k)) = 0, for appropriate initial conditions.
Comments