A233346 Primes of the form p(k)^2 + q(m)^2 with k > 0 and m > 0, where p(.) is the partition function (A000041), and q(.) is the strict partition function (A000009).
2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 101, 109, 113, 137, 149, 157, 193, 229, 241, 349, 373, 509, 709, 733, 1033, 1049, 1213, 1249, 1453, 1493, 1669, 1789, 2141, 2237, 2341, 2917, 3037, 3137, 3361, 4217, 5801, 5897, 6029, 6073, 8821, 10301, 10937, 11057, 18229, 18289, 19249, 20173, 20341, 20389, 21017, 24001, 30977, 36913, 42793
Offset: 1
Keywords
Examples
a(1) = 2 since p(1)^2 + q(1)^2 = 1^2 + 1^2 = 2. a(2) = 5 since p(1)^2 + q(3)^2 = 1^2 + 2^2 = 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..176
- Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] n=0 Do[If[Mod[Prime[m]+1,4]>0,Do[If[PartitionsP[j]>=Sqrt[Prime[m]],Goto[aa], If[SQ[Prime[m]-PartitionsP[j]^2]==False,Goto[bb],Do[If[PartitionsQ[k]^2==Prime[m]-PartitionsP[j]^2, n=n+1;Print[n," ",Prime[m]];Goto[aa]];If[PartitionsQ[k]^2>Prime[m]-PartitionsP[j]^2,Goto[bb]];Continue,{k,1,2*Sqrt[Prime[m]]}]]]; Label[bb];Continue,{j,1,Sqrt[Prime[m]]}]]; Label[aa];Continue,{m,1,4475}]
Comments