This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233357 #21 Apr 07 2020 22:00:07 %S A233357 1,2,2,5,12,6,15,64,72,24,52,350,660,480,120,203,2024,5670,6720,3600, %T A233357 720,877,12460,48552,83160,71400,30240,5040,4140,81638,424536,983808, %U A233357 1201200,806400,282240,40320 %N A233357 Triangle read by rows: T(n,k) = ((Stirling2)^2)(n,k) * k! %C A233357 T(n,k) is the number of preferential arrangements with k levels of partitions of the set {1...n}. %C A233357 2*T(n,k) is the number of formulas in first order logic that have an n-place predicate and k runs of A's and E's (universal and existential quantifiers, compare runs of 0's ans 1's counted by A005811), but don't include a negator. %C A233357 4*T(n,k) is the number of such formulas that may include an negator. %C A233357 T(n,k) is the number of partitions of an n-set into colored blocks, such that exactly k colors are used. T(3,2) = 12: 1a|23b, 1b|23a, 13a|2b, 13b|2a, 12a|3b, 12b|3a, 1a|2a|3b, 1b|2b|3a, 1a|2b|3a, 1b|2a|3b, 1a|2b|3b, 1b|2a|3a. - _Alois P. Heinz_, Sep 01 2019 %H A233357 Tilman Piesk, <a href="/A233357/b233357.txt">First 100 rows, flattened</a> %H A233357 Tilman Piesk, <a href="http://en.wikiversity.org/wiki/Preferential_arrangements_of_set_partitions">Preferential arrangements of set partitions</a> (Wikiversity) %F A233357 S2 = A008277 (Stirling numbers of the second kind). %F A233357 (S2)^2 = A039810 (matrix square of S2). %F A233357 T(n,k) = ((S2)^2)(n,k) * k! = Sum(k<=i<=n) [ S2(n,i) * S2(i,k) ] * k!. %F A233357 T(n,1) = Bell(n) = A000110(n). %F A233357 T(n,2) = A052896(n). %F A233357 T(n,n) = n! = A000142(n). %F A233357 T(n,n-1) = n!*(n-1) = A062119(n). %e A233357 Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level. %e A233357 Compare descriptions of A083355 and A232598. %e A233357 a(3,1)=5: %e A233357 {1,2,3} %e A233357 {1,2}{3} %e A233357 {1,3}{2} %e A233357 {2,3}{1} %e A233357 {1}{2}{3} %e A233357 a(3,2)=12: %e A233357 {1,2}:{3} {3}:{1,2} %e A233357 {1,3}:{2} {2}:{1,3} %e A233357 {2,3}:{1} {1}:{2,3} %e A233357 {1}{2}:{3} {3}:{1}{2} %e A233357 {1}{3}:{2} {2}:{1}{3} %e A233357 {2}{3}:{1} {1}:{2}{3} %e A233357 a(3,3)=6: %e A233357 {1}:{2}:{3} %e A233357 {1}:{3}:{2} %e A233357 {2}:{1}:{3} %e A233357 {2}:{3}:{1} %e A233357 {3}:{1}:{2} %e A233357 {3}:{2}:{1} %e A233357 Triangle begins: %e A233357 k = 1 2 3 4 5 6 7 8 sums %e A233357 1 1 1 %e A233357 2 2 2 4 %e A233357 3 5 12 6 23 %e A233357 4 15 64 72 24 175 %e A233357 5 52 350 660 480 120 1662 %e A233357 6 203 2024 5670 6720 3600 720 18937 %e A233357 7 877 12460 48552 83160 71400 30240 5040 251729 %e A233357 8 4140 81638 424536 983808 1201200 806400 282240 40320 3824282 %Y A233357 A008277 (Stirling2), A039810 (square of Stirling2), A000110 (Bell), A000142 (factorials), A083355 (row sums: number of preferential arrangements), A232598 (number of preferential arrangements by number of blocks). %Y A233357 Cf. A130191. %K A233357 nonn,tabl %O A233357 1,2 %A A233357 _Tilman Piesk_, Dec 07 2013