cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233359 a(n) = |{0 < k < n: L(k) + q(n-k) is prime}|, where L(k) is the k-th Lucas number (A000204), and q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 1, 1, 2, 3, 1, 2, 4, 2, 2, 3, 3, 2, 4, 3, 5, 1, 4, 5, 3, 1, 3, 3, 7, 3, 3, 4, 5, 2, 2, 9, 2, 4, 4, 9, 2, 6, 6, 6, 3, 3, 1, 5, 7, 4, 4, 5, 7, 4, 9, 5, 6, 4, 1, 5, 6, 11, 9, 4, 2, 5, 5, 4, 6, 8, 9, 12, 3, 7, 5, 4, 10, 6, 7, 6, 3, 5, 8, 4, 4, 4, 4, 7, 7, 5, 1, 4, 9, 7, 4, 8, 7, 6, 5, 2, 3, 7, 11, 5, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 08 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
We have verified this for n up to 60000.
Note that for n = 19976 there is no k = 0,...,n such that F(k) + q(n-k) is prime, where F(0), F(1), ... are the Fibonacci numbers.

Examples

			a(7) = 2 since L(1) + q(6) = 1 + 4 = 5 and L(6) + q(1) = 18 + 1 = 19 are both prime.
a(17) = 1 since L(13) + q(4) = 521 + 2 = 523 is prime.
a(21) = 1 since L(5) + q(16) = 11 + 32 = 43 is prime.
a(42) = 1 since L(22) + q(20) = 39603 + 64 = 39667 is prime.
a(54) = 1 since L(8) + q(46) = 47 + 2304 = 2351 is prime.
a(86) = 1 since L(67) + q(19) = 100501350283429 + 54 = 100501350283483 is prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[LucasL[k]+PartitionsQ[n-k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]