A233360 Primes of the form L(k) + q(m) with k > 0 and m > 0, where L(k) is the k-th Lucas number (A000204), and q(.) is the strict partition function (A000009).
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 101, 103, 107, 127, 131, 149, 151, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 307, 337, 347, 349, 379, 397, 401, 419, 421, 449, 463, 487, 523, 541, 571, 643, 647, 661
Offset: 1
Keywords
Examples
a(1) = 2 since L(1) + q(1) = 1 + 1 = 2. a(2) = 3 since L(1) + q(3) = 1 + 2 = 3. a(3) = 5 since L(2) + q(3) = 3 + 2 = 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..270
Programs
-
Mathematica
n=0 Do[Do[If[LucasL[j]>=Prime[m],Goto[aa], Do[If[PartitionsQ[k]==Prime[m]-LucasL[j], n=n+1;Print[n," ",Prime[m]];Goto[aa]];If[PartitionsQ[k]>Prime[m]-LucasL[j],Goto[bb]];Continue,{k,1,2*(Prime[m]-LucasL[j])}]]; Label[bb];Continue,{j,1,2*Log[2,Prime[m]]}]; Label[aa];Continue,{m,1,125}]
Comments